화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.4, 423-430, August, 2021
화재 발생 시 목재 수종의 화재위험성 등급 평가
Assessment of Fire Risk Rating for Wood Species in Fire Event
E-mail:
초록
본 연구는 건자재용 목재의 화재위험성 및 화재위험성 등급을 평가하기 위하여 Chung’s equations-III, -IV에 의한 화재 성능지수-III (FPI-III), 화재성장지수-III (FGI-III), 화재위험성지수-IV (FRI-IV)를 중심으로 조사하였다. 시험편은 적삼목, 전나무, 물푸레나무, 단풍나무를 사용하였다. 화재 특성은 시험편에 대하여 콘칼로리미터(ISO 5660-1) 장비를 이용하여 조사하였다. 연소반응 후 측정된 FPI-III는 polymethylmetacrylate (PMMA) 기준으로 0.86∼12.77로 나타났다. FGI-III는 PMMA를 기준으로 0.63∼5.26으로 나타났다. 화재위험성 등급 지수인 FRI-IV에 의한 화재 등급은 0.05∼6.12 였으며 적삼목이 단풍나무와 비교하여 122.4배 높았다. FRI-IV에 의한 화재위험성 등급은 단풍나무, 물푸레나무, 전나무, PMMA, 적삼목 순서로 증가하였다. 모든 시편의 CO 피크농도는 103∼162 ppm으로 측정되었으며 미국직업안전위생관리국(occupational safety and health administration)의 허용기준(permissible exposure limits)인 50 ppm보다 2.1∼3.2배 높게 나타났다. 적삼목과 같이 체적밀도가 작고 휘발성 유기물질을 다량 함유한 소재는 FPI-III가 낮고 FGI-III가 높으므로 화재위험성 등급이 높은 것으로 나타났다.
In order to evaluate the fire risk and fire risk rating of wood for construction materials, this study focused on fire performance index-III (FPI-III), fire growth index-III (FGI-III), and fire risk index-IV (FRI-IV) according to Chung's equations-III and -IV. Western red cedar, needle fir, ash, and maple were used as the specimens. The fire characteristics were investigated using a cone calorimeter (ISO 5660-1) equipment on the specimen. The FPI-III measured after the combustion reaction was 0.86 to 12.77 based on polymethylmethacrylate (PMMA). The FGI-III was found to be 0.63 to 5.26 based on PMMA. The fire rating according to the FRI-IV, which is the fire rating index, was 0.05 to 6.12, and the western red cedar was 122.4 times higher than that of the maple. The fire risk rating according to the FRI-IV increased in the order of maple, ash, needle fir, PMMA and western red cedar. The CO peak concentration of all specimens was measured as 103 to 162 ppm, and it was 2.1 to 3.2 times higher than 50 ppm, the permissible exposure limits of the US occupational safety and health administration. Materials such as western red cedar, which have a low bulk density and contain a large amount of volatile organic substances, have a low FPI-III and a high FGI-III, so they have a high fire risk rating.
  1. Pearce FM, Khanna YP, Raucher D, Thermal Analysis in Polymer Flammability, New York, USA (1981).
  2. Gao M, Zhu K, Sun YJ, J. Fire Sci., 22, 505 (2004)
  3. Gao M, Sun CY, Zhu K, J. Therm. Anal. Calorim., 75, 221 (2004)
  4. Boonmee N, Quintiere JG, Proc. Combust. Inst., 30, 2303 (2005)
  5. Spearpoint M, Quintiere J, Fire Saf. J., 36, 391 (2001)
  6. Delichatsios M, Paroz B, Bhargava A, Fire Saf. J., 38, 219 (2003)
  7. Fateh T, Rogaume T, Luche J, Richard F, Jabouille F, J. Anal. Appl. Pyrolysis, 107, 87 (2014)
  8. Li KY, Pau DSW, Wang JH, Ji J, Chem. Eng. Sci., 123, 39 (2015)
  9. Terrei L, Acem Z, Lardet P, Boulet P, Parent G, Fire Saf. J., 122, 103316 (2021)
  10. Brahmia FZ, Zsolt K, Horvath PG, Alpar TL, Surf. Interfaces, 21, 100736 (2020)
  11. ISO 5660-1, Reaction-to-fire tests-heat release, Switzerland (2015).
  12. Delichatsios MA, Fire Saf. J., 20, 299 (1993)
  13. Tawiah B, Yu B, Yuen RKK, Hu Y, Wei R, Xin JH, Fei B, Carbon, 150, 8 (2019)
  14. Yan L, Xu Z, Deng N, Prog. Org. Coat., 135, 123 (2019)
  15. Chung YJ, Jin E, Appl. Chem. Eng., 32(1), 75 (2021)
  16. Simpso WT, Drying and Control of Moisture Content and Dimensional Changes, Wisconsin, USA, 1-21 (1987).
  17. Dehaan JD, Kirk’s Fire Investigation (Fifth Ed.), 84-112, Pearson, London, England (2002).
  18. Buchanan MA, TAPPI, 35, 209 (1952)
  19. Quintire JG, Principles of Fire Behavior, Chap. 5, Cengage Learning, Delmar, USA (1998).
  20. Chung YJ, J. Ind. Eng. Chem., 16(1), 15 (2010)
  21. Schartel B, Hull TR, Fire Mater., 31, 327 (2007)
  22. Pohleven J, Burnard MD, Kutnar A, Wood Fiber Sci., 51, 231 (2019)
  23. Babrauskas V, Fire Mater., 8, 81 (1984)
  24. Jiao C, Chen X, Zhang J, J. Fire Sci., 27, 465 (2009)
  25. White RH, Dietenberger MA, Wood Handbook: Wood as an Engineering Material, Ch.17: Fire Safety, USA (1999).
  26. Ernst A, Zibrak JD, N. Engl. J. Med., 339, 1603 (1998)
  27. Burg RV, J. Appl. Toxicol., 19, 379 (1999)
  28. OHSA, Carbon Monoxide, September 14, USA (2009).
  29. Luft UC, Aviation Physiology: the Effects of Altitude in Handbook of Physiology, USA (1965).
  30. OHSA, Carbon Dioxide, Toxicological Review of Selected Chemicals, January 19 (1989).