Korean Journal of Chemical Engineering, Vol.38, No.9, 1834-1942, September, 2021
Characteristics of Sr0.92Y0.08Ti1-xNixO3-δ anode for direct internal steam methane reforming in solid oxide fuel cells
E-mail:
Sr0.92Y0.08Ti1-xNixO3-δ (SYTN) having a perovskite structure was investigated as a direct internal steam methane reforming catalyst for use in solid oxide fuel cells. To analyze the effect of Ni-ion doping, 0, 3, and 5mol% of Ni is doped at the B-site of Sr0.92Y0.08TiO3-δ (SYT). On doping, each Ni2+ cation substitutes a Ti4+ cation in SYT to form an oxygen vacancy with two electron holes, thus acting as an oxygen-ion conductor. The number of oxygen vacancies increases with increase in Ni-ion doping. In particular, Sr0.92Y0.08Ti0.95Ni0.05O3-δ (SYTN5) shows excellent catalytic activity for steam methane reforming, yielding CH4 conversions of 0.80, 0.96, and 0.99 at 700, 800, and 900 °C, respectively, and H2-to-CO ratios of 3.38, 3.32 and 3.24 at 700, 800, and 900 °C, respectively, which are very close to the theoretical values for the steam methane reforming and water gas shift reactions. The excellent electrochemical property and high oxygen-ion conductivity of the SYTN5 anode result in good cell performance.
Keywords:Solid Oxide Fuel Cells;Steam Methane Reforming;Ni-ion Doping;Alternative Anode;Carbon Deposition
- Lyu ZW, Shi WY, Han MF, Appl. Energy, 228, 556 (2018)
- Fuel Cell Handbook 7th Edition, U.S. Department of Energy, EG&G Technical Services Inc., West Virginia (2004).
- Klein JM, Henault M, Roux C, Bultel Y, Georges S, J. Power Sources, 193(1), 331 (2009)
- Barelli L, Bidini G, Di Michele A, Gammaitoni L, Mattarelli M, Mondi F, Sisani E, Int. J. Hydrog. Energy, 44(31), 16582 (2019)
- Su H, Hu YH, Chem. Eng. J., 402, 126235 (2020)
- Di Giuliano A, Gallucci K, Chem. Eng. Process., 130, 240 (2018)
- Fan L, van Biert L, Thattai AT, Verkooijen AHM, Aravind PV, Int. J. Hydrog. Energy, 40(15), 5150 (2015)
- Matsuzaki Y, Yasuda I, J. Electrochem. Soc., 147(5), 1630 (2000)
- Zhao Q, Wang Y, Wang YN, Li L, Zeng WQ, Li GY, Hu CW, Int. J. Hydrog. Energy, 45(28), 14281 (2020)
- Jacobson AJ, Chem. Mater., 22, 660 (2010)
- Fergus JW, et al., Solid oxide fuel cells: Materials properties and performance (2019).
- Atkinson A, Barentt S, Gorte RJ, Irvine JTS, Mcevoy AJ, Mogensen M, Singhal SC, Vohs J, Nat. Mater., 3, 17 (2004)
- Hanna J, Lee WY, Shi Y, Ghoniem AF, Prog. Energ. Combust., 40, 74 (2014)
- Lee SI, Vohs JM, Gorte RJ, J. Electrochem. Soc., 151(9), A1319 (2004)
- Kim H, Lu C, Worrell WL, Vohs JM, Gorte RJ, J. Electrochem. Soc., 149(3), A247 (2002)
- Suzuki M, Sasaki H, Otoshi S, Kajimura A, Ippommatsu M, Solid State Ion., 62, 125 (1993)
- Mahato N, Banerjee A, Gupta A, Omar S, Balani K, Prog. Mater. Sci., 72, 141 (2015)
- Gorte RJ, Park S, Vohs JM, Wang CH, Adv. Mater., 12(19), 1465 (2000)
- Ding H, Zhou D, Liu S, Wu W, Yang Y, Yang Y, Tao Z, Appl. Energy, 223-234, 37 (2019)
- Bian Z, Wang Z, Jiang B, Hongmanorom P, Zhong W, Kawi S, Renew. Sust. Energ. Rev., 134, 110291 (2020)
- Kim KH, Lim CS, Han JW, Korean J. Chem. Eng., 37(8), 1295 (2020)
- Jeong HG, Kim DY, Sharma B, Noh JH, Lee KT, Myung JH, Korean J. Chem. Eng., 37(8), 1440 (2020)
- Goodenough JB, Huang YH, J. Power Sources, 173(1), 1 (2007)
- Shu LN, Sunarso J, Hashim SS, Mao JK, Zhou W, Liang FL, Int. J. Hydrog. Energy, 44(59), 31275 (2019)
- Cao J, Su C, Ji Y, Yang G, Shao Z, J. Energy Chem., 57, 406 (2021)
- Gwan MA, Yun JW, J. Electroceram., 40, 171 (2018)
- Kimi JH, Yun JW, J. Electrochem. Sci. Te., 10, 335 (2019)
- Lee JM, Yun JW, Ceram. Int., 42, 8698 (2016)
- Kim JH, Yun JW, J. Electrochem. Sci. Te., 9, 133 (2018)
- Park EK, Lee S, Yun JW, Appl. Surf. Sci., 429, 171 (2018)
- Kim HS, Jeon Y, Kim JH, Jang GY, Yoon SP, Yun JW, Appl. Surf. Sci., 510, 145450 (2020)
- Papargyriou D, Irvine JTS, Solid State Ion., 288, 120 (2016)
- Gao Y, Chen D, Saccoccio M, Lu Z, Ciucci F, Nano Energy, 27, 499 (2016)