화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.9, 1834-1942, September, 2021
Characteristics of Sr0.92Y0.08Ti1-xNixO3-δ anode for direct internal steam methane reforming in solid oxide fuel cells
E-mail:
Sr0.92Y0.08Ti1-xNixO3-δ (SYTN) having a perovskite structure was investigated as a direct internal steam methane reforming catalyst for use in solid oxide fuel cells. To analyze the effect of Ni-ion doping, 0, 3, and 5mol% of Ni is doped at the B-site of Sr0.92Y0.08TiO3-δ (SYT). On doping, each Ni2+ cation substitutes a Ti4+ cation in SYT to form an oxygen vacancy with two electron holes, thus acting as an oxygen-ion conductor. The number of oxygen vacancies increases with increase in Ni-ion doping. In particular, Sr0.92Y0.08Ti0.95Ni0.05O3-δ (SYTN5) shows excellent catalytic activity for steam methane reforming, yielding CH4 conversions of 0.80, 0.96, and 0.99 at 700, 800, and 900 °C, respectively, and H2-to-CO ratios of 3.38, 3.32 and 3.24 at 700, 800, and 900 °C, respectively, which are very close to the theoretical values for the steam methane reforming and water gas shift reactions. The excellent electrochemical property and high oxygen-ion conductivity of the SYTN5 anode result in good cell performance.
  1. Lyu ZW, Shi WY, Han MF, Appl. Energy, 228, 556 (2018)
  2. Fuel Cell Handbook 7th Edition, U.S. Department of Energy, EG&G Technical Services Inc., West Virginia (2004).
  3. Klein JM, Henault M, Roux C, Bultel Y, Georges S, J. Power Sources, 193(1), 331 (2009)
  4. Barelli L, Bidini G, Di Michele A, Gammaitoni L, Mattarelli M, Mondi F, Sisani E, Int. J. Hydrog. Energy, 44(31), 16582 (2019)
  5. Su H, Hu YH, Chem. Eng. J., 402, 126235 (2020)
  6. Di Giuliano A, Gallucci K, Chem. Eng. Process., 130, 240 (2018)
  7. Fan L, van Biert L, Thattai AT, Verkooijen AHM, Aravind PV, Int. J. Hydrog. Energy, 40(15), 5150 (2015)
  8. Matsuzaki Y, Yasuda I, J. Electrochem. Soc., 147(5), 1630 (2000)
  9. Zhao Q, Wang Y, Wang YN, Li L, Zeng WQ, Li GY, Hu CW, Int. J. Hydrog. Energy, 45(28), 14281 (2020)
  10. Jacobson AJ, Chem. Mater., 22, 660 (2010)
  11. Fergus JW, et al., Solid oxide fuel cells: Materials properties and performance (2019).
  12. Atkinson A, Barentt S, Gorte RJ, Irvine JTS, Mcevoy AJ, Mogensen M, Singhal SC, Vohs J, Nat. Mater., 3, 17 (2004)
  13. Hanna J, Lee WY, Shi Y, Ghoniem AF, Prog. Energ. Combust., 40, 74 (2014)
  14. Lee SI, Vohs JM, Gorte RJ, J. Electrochem. Soc., 151(9), A1319 (2004)
  15. Kim H, Lu C, Worrell WL, Vohs JM, Gorte RJ, J. Electrochem. Soc., 149(3), A247 (2002)
  16. Suzuki M, Sasaki H, Otoshi S, Kajimura A, Ippommatsu M, Solid State Ion., 62, 125 (1993)
  17. Mahato N, Banerjee A, Gupta A, Omar S, Balani K, Prog. Mater. Sci., 72, 141 (2015)
  18. Gorte RJ, Park S, Vohs JM, Wang CH, Adv. Mater., 12(19), 1465 (2000)
  19. Ding H, Zhou D, Liu S, Wu W, Yang Y, Yang Y, Tao Z, Appl. Energy, 223-234, 37 (2019)
  20. Bian Z, Wang Z, Jiang B, Hongmanorom P, Zhong W, Kawi S, Renew. Sust. Energ. Rev., 134, 110291 (2020)
  21. Kim KH, Lim CS, Han JW, Korean J. Chem. Eng., 37(8), 1295 (2020)
  22. Jeong HG, Kim DY, Sharma B, Noh JH, Lee KT, Myung JH, Korean J. Chem. Eng., 37(8), 1440 (2020)
  23. Goodenough JB, Huang YH, J. Power Sources, 173(1), 1 (2007)
  24. Shu LN, Sunarso J, Hashim SS, Mao JK, Zhou W, Liang FL, Int. J. Hydrog. Energy, 44(59), 31275 (2019)
  25. Cao J, Su C, Ji Y, Yang G, Shao Z, J. Energy Chem., 57, 406 (2021)
  26. Gwan MA, Yun JW, J. Electroceram., 40, 171 (2018)
  27. Kimi JH, Yun JW, J. Electrochem. Sci. Te., 10, 335 (2019)
  28. Lee JM, Yun JW, Ceram. Int., 42, 8698 (2016)
  29. Kim JH, Yun JW, J. Electrochem. Sci. Te., 9, 133 (2018)
  30. Park EK, Lee S, Yun JW, Appl. Surf. Sci., 429, 171 (2018)
  31. Kim HS, Jeon Y, Kim JH, Jang GY, Yoon SP, Yun JW, Appl. Surf. Sci., 510, 145450 (2020)
  32. Papargyriou D, Irvine JTS, Solid State Ion., 288, 120 (2016)
  33. Gao Y, Chen D, Saccoccio M, Lu Z, Ciucci F, Nano Energy, 27, 499 (2016)