화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.104, 8-21, December, 2021
Relevant design parameters for a reactor used in P removal with ZVI-based materials
E-mail:
Phosphate (P) retention onto zero valent iron (ZVI) particles and on iron oxyhydroxides has been widely investigated as a treatment process for domestic wastewater. Since such a process is less expensive and requires less maintenance than typical biological and physicochemical methods, it could provide a viable path to reaching high P removal capacities. This manuscript provides up-to-date information on P retention mechanisms, with the main ones being adsorption, precipitation and co-precipitation. The major experimental parameters affecting these mechanisms and ZVI reactivity are summarized. Through a review of batch studies and continuous reactor experiments, the P retention capacities of ZVI-based materials have been collated and compared according to test operating conditions, such as pH, initial adsorbate concentrations or hydrodynamic conditions. ZVI and its byproducts have already demonstrated high P retention capacities (up to 264 mg P/g ZVI). Methodological recommendations are provided to design reactor for phosphorus removal in wastewater treatment plants.
  1. Emsley J, The Phosphorus Cycle, The natural environment and the biogeochemical cycles, Springer, Berlin, 1980.
  2. Chowdhury RB, Moore GA, Weatherley AJ, Arora M, J. Clean Prod., 140, 945 (2017)
  3. Cordell D, White S, Agronomy, 3(1), 86 (2013)
  4. Vymazal J, Sci. Total Environ., 380(1-3), 48 (2007)
  5. Deronzier G, Choubert JM, Ministere de l’agriculture, de l’alimentation, de la peche et des affaires rurales, 2004.
  6. Carpenter SR, Ludwig D, Brock WA, Ecol. Appl., 22 (1999).
  7. Hecky RE, Kilham P, Limnol. Oceanogr., 33, 796 (1988)
  8. Nemery J, ‘Phosphore et eutrophisation’, Encyclopedie de l’Environnement, Nov. 05, 2019.
  9. Pinay G, et al., L’eutrophisation: manifestations, causes, consequences et predictibilite. Editions Quae, 2018.
  10. Smith VH, Tilman GD, Nekola JC, Environ. Pollut., 100(1-3), 179 (1999)
  11. IFEN, ‘L’Eutrophisation des rivieres en France’, Orleans, 1999.
  12. Legeay PL, Moatar F, Gascuel-Odoux C, Gruau G, ‘Spatial and temporal variations of loads and sources of total and dissolved Phosphorus in a set of rivers (Western France).’, vol.17 2015.
  13. Oenema O, J. Anim. Sci., 82, E196 (2004)
  14. de-Bashan LE, Bashan Y, Water Res., 38(19), 4222 (2004)
  15. Reddy KR, Kadlec RH, Flaig E, Gale PM, Crit. Rev. Environ. Sci. Technol., 29(1), 83 (1999)
  16. Clark T, Stephenson T, Pearce PA, Water Res., 31(10), 2557 (1997)
  17. Lopez-Vazquez CM, Hooijmans CM, Brdjanovic D, Gijzen HJ, van Loosdrecht MCM, Water Res., 42(10-11), 2349 (2008)
  18. Valsami-Jones E, Mineral. Mag., 65(5), 611 (2001)
  19. Doyle JD, Parsons SA, Water Res., 36(16), 3925 (2002)
  20. Jaffer Y, Clark TA, Pearce P, Parsons SA, Water Res., 36(7), 1834 (2002)
  21. Kataki S, West H, Clarke M, Baruah DC, Resour. Conserv. Recycl., 107, 142 (2016)
  22. Hauduc H, Takacs I, Smith S, Szabo A, Murthy S, Daigger GT, Sperandio M, Water Res., 73, 157 (2015)
  23. Agyei NM, Strydom CA, Potgieter JH, Cem. Concr. Res., 32(12), 1889 (2002)
  24. Bacelo H, Pintor AMA, Santos SCR, Boaventura RAR, Botelho CMS, Chem. Eng. J., 381 (2020)
  25. Liu C, Li Y, Luan Z, Chen Z, Zhang Z, Jia Z, J. Environ. Sci., 19(10), 1166 (2007)
  26. Reddy KR, DeLaune RD, Biogeochemistry of wetlands: science and applications, CRC Press, Boca Raton, 2008.
  27. Jolivet JP, Chaneac C, Tronc E, Chem Commun, 5, 477 (2004)
  28. Almeelbi T, Bezbaruah A, J. Nanoparticle Res., 14(7) (2012)
  29. Du X, Han Q, Li J, Li H, J. Taiwan Inst. Chem. Eng., 76, 167 (2017)
  30. Li GL, Gao S, Zhang GS, Zhang XW, Chem. Eng. J., 235, 124 (2014)
  31. Chitrakar R, Tezuka S, Sonoda A, Sakane K, Ooi K, Hirotsu T, J. Colloid Interface Sci., 298(2), 602 (2006)
  32. Fu FL, Dionysiou DD, Liu H, J. Hazard. Mater., 267, 194 (2014)
  33. Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF, Sci. Total Environ., 424, 1 (2012)
  34. Zhang W, J. Nanoparticle Res., 5 (3-4), Art. no. 3 (2003).
  35. Eljamal O, Khalil AME, Sugihara Y, Matsunaga N, Chem. Eng. J., 293, 225 (2016)
  36. Wen Z, Zhang Y, Dai C, Colloids Surf. A: Physicochem. Eng. Asp., 457, 433 (2014)
  37. Sivry Y, ‘Utilisation des nanoparticules de fer zero-valent dans le traitement des boues d’epuration, p.5, 2014.
  38. Li XQ, Zhang WX, Langmuir, 22(10), 4638 (2006)
  39. Maamoun I, Eljamal O, Khalil AME, Sugihara Y, Matsunaga N, Transp. Porous Media, 125(2), 395 (2018)
  40. Noubactep C, Environ. Technol., 29(8), 909 (2008)
  41. Liu HB, Chen TH, Zou XH, Xie QQ, Qing CS, Chen D, Frost RL, Chem. Eng. J., 234, 80 (2013)
  42. Sleiman N, ‘Mecanismes d’elimination du phosphore dans un reacteur garni d’un melange de limaille de fer et de sable’, Thesis of the University of Limoges, 2016.
  43. O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C, Adv. Water Resour., 51, 104 (2013)
  44. Ponder SM, Darab JG, Mallouk TE, Environ. Sci. Technol., 34(12) (2000)
  45. Nagoya S, Nakamichi S, Kawase Y, Sep. Purif. Technol., 218, 120 (2019)
  46. Ngoi KH, Wong JC, Chiu WS, Chia CH, Jin KS, Kim HJ, Kim HC, Ree MH, J. Ind. Eng. Chem., 95, 37 (2021)
  47. Mu Y, Jia F, Ai Z, Zhang L, Environ. Sci. Nano, 4(1), 27 (2017)
  48. Melendres C, Camillone N, Tipton T, Electrochimica Acta, 34(2), 281 (1989)
  49. Pryor MJ, Cohen M, Brown F, J. Electrochem. Soc., 99(12), 542 (1952)
  50. Vatankhah G, Menard H, Brossard L, ‘Effect of sulfate and chloride ions on the electrochemical behavior of iron in aqueous phosphate solutions’, p. 6, 1998.
  51. Noubactep C, Korean J. Chem. Eng., 29(8), 1050 (2012)
  52. Signorini L, Pasquini L, Savini L, Carboni R, Boscherini F, Bonetti E, Giglia A, Pedio M, Mahne N, Nannarone S, Phys. Rev. B, 68(19) (2003)
  53. Yan W, Herzing AA, Kiely CJ, Zhan W, J. Contam. Hydrol., 118(3-4), 96 (2010)
  54. Cornell RM, Schwertmann U, The iron oxides: structure, properties, reactions, occurrences and uses, John Wiley & Sons, 2003.
  55. Wan J, Simon S, Deluchat V, Dictor MC, Dagot C, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 48(10), 1272 (2013)
  56. Manning BA, Hunt ML, Amrhein C, Yarmoff JA, Environ. Sci. Technol., 36(24), 5455 (2002)
  57. Kosmulski M, Maczka E, Jartych E, Rosenholm JB, Adv. Colloid Interface Sci., 103(1), 57 (2003)
  58. Kumar E, Bhatnagar A, Hogland W, Marques M, Sillanpaa M, Adv. Colloid Interface Sci., 203, 11 (2014)
  59. Kosmulski M, J. Colloid Interface Sci., 353(1), 1 (2011)
  60. Madigan C, Leong YK, Ong BC, Int. J. Miner. Process., 93(1) (2009)
  61. Mustafa S, Khan S, Iqbal Zaman M, Water Res., 44(3), 918 (2010)
  62. Tang CY, Fu QS, Gao D, Criddle CS, Leckie JO, Water Res., 44(8), 2654 (2010)
  63. Burdige DJ, Geochemistry of marine sediments, Princeton University Press, 2006.
  64. Tan KH, Principles of soil chemistry, CRC Press, 2011.
  65. Watanabe H, Seto J, Bull. Chem. Soc. Jpn., 59(9), 2683 (1986)
  66. Taboada E, Rodriguez E, Roig A, Oro J, Roch A, Muller RN, Langmuir, 23(8), 4583 (2007)
  67. Noubactep C, Water SA, 36(5) (2010)
  68. Triszcz JM, Port A, Einschlag FSG, Chem. Eng. J., 150(2-3), 431 (2009)
  69. Reddy KR, DeLaune RD, Biogeochemistry of wetlands: science and applications, CRC Press, Boca Raton, 2008.
  70. Suponik T, Winiarski A, Szade J, Water. Air. Soil Pollut., 226(1), 360 (2015)
  71. Eljamal O, Mokete R, Matsunaga N, Sugihara Y, J. Environ. Chem. Eng., 6(5), 6207 (2018)
  72. Takami S, Eljamal O, Khalil AME, Eljamal R, Matsunaga N, J. JSCE, 7(1), 30 (2019)
  73. Wang Q, Liao Z, Yao D, Yang Z, Wu Y, Tang C, Sci. Total Environ., 767 (2021)
  74. Al-Borno A, Tomson MB, Cosmochim. Acta, 58, 5373 (1994)
  75. Iuliano M, Ciavatta L, De Tommaso G, On the solubility constant of strengite, Soil Sci. Soc. Am. J., 71 (4), 1137 (2007).
  76. Santoro V, Martin V, Persson P, Lerda C, Said-Pullicino D, Magnacca G, Celi L, Geoderma, 348, 168 (2019)
  77. Thompson A, Chadwick OA, Rancourt DG, Chorover J, Geochim. Cosmochim. Acta, 70(7), 1710 (2006)
  78. Chatellier X, Grybos M, Abdelmoula M, Kemner KM, Leppard GG, Mustin C, West MM, Paktunc D, Appl. Geochem., 35, 325 (2013)
  79. Weidner E, Ciesielczyk F, Materials, 12(6), 927 (2019)
  80. Namasivayam C, Prathap K, J. Hazard. Mater., 123(1-3), 127 (2005)
  81. Klimeski A, Chardon WJ, Turtola E, Uusitalo R, Agric. Food Sci., 21, 206 (2012)
  82. Petrone L, Adv. Colloid Interface Sci., 195-196, 1 (2013)
  83. Sperlich A, ‘Phosphate Adsorption onto Granular Ferric Hydroxide (GFH) for Wastewater Reuse’, p. 138, 2010.
  84. Ajmal Z, Muhmood A, Usman M, Kizito S, Lu JX, Dong RJ, Wu SB, J. Colloid Interface Sci., 528, 145 (2018)
  85. Xiong WP, Tong J, Yang ZH, Zeng GM, Zhou YY, Wang DB, Song PP, Xu R, Zhang C, Cheng M, J. Colloid Interface Sci., 493, 17 (2017)
  86. Miyake Y, Ishida H, Tanaka S, Kolev SD, Chem. Eng. J., 218, 350 (2013)
  87. Tan KL, Hameed BH, J. Taiwan Inst. Chem. Eng., 74, 25 (2017)
  88. Revellame ED, Fortela DL, Sharp W, Hernandez R, Zappi ME, Clean. Eng. Technol., 1 (2020)
  89. Hinz C, Geoderma, 99(3-4) (2001)
  90. Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthes V, Krimissa M, Appl. Geochem., 22(2), 249 (2007)
  91. Delgadillo-Velasco L, Hernandez-Montoya V, Rangel-Vazquez NA, Cervantes FJ, Montes-Moran MA, del Rosario Moreno-Virgen M, J. Mol. Liq., 262, 443 (2018)
  92. Mokete R, Eljamal O, Sugihara Y, Chem. Eng. Process. - Process Intensif., 150 (2020)
  93. Wang Y, Yu Y, Li H, Shen C, J. Environ. Sci., 50, 79 (2016)
  94. Bowden LI, Jarvis AP, Younger PL, Johnson KL, Environ. Sci. Technol., 43(7), 2476 (2009)
  95. Simon S, Courtin-Nomade A, Vasiliu A, Sleiman N, Deluchat V, RSC Adv., 6(59), 54479 (2016)
  96. Klas S, Kirk DW, J. Hazard. Mater., 252-253, 77 (2013)
  97. Guan XH, Shang C, Chen GH, J. Colloid Interface Sci., 296(1), 51 (2006)
  98. Debicka M, Kocowicz A, Weber J, Jamroz E, Arch. Agron. Soil Sci., 62(6), 840 (2016)
  99. Hiradate S, Uchida N, Soil Sci. Plant Nutr., 50(5), 665 (2004)
  100. Weng L, Van Riemsdijk WH, Hiemstra T, Environ. Sci. Technol., 42(23), 8747 (2008)
  101. Borggaard OK, Raben-Lange B, Gimsing AL, Strobel BW, Geoderma, 127(3-4), 270 (2005)
  102. Antelo J, Arce F, Avena M, Fiol S, Lopez R, Macias F, Geoderma, 138(1-2), 12 (2007)
  103. Yan J, Jiang T, Yao Y, Lu S, Wang Q, Wei S, J. Environ. Sci., 42, 152 (2016)
  104. Bhattacharjee S, Darwish N, Shanableh A, J. Environ. Chem. Eng., 8(5) (2020)
  105. Donnert D, Berg U, Weidler PG, Nesch R, Song Y, Salecker M, Kusche I, Bumiller W, Friedrich F, Wasser-und Geotechnologie 3 (02) (2002).
  106. Molle P, Lienard A, Grasmick A, Iwema A, Kabbabi A, Water Sci. Technol., 51(9), 193 (2005)
  107. Yin HB, Yun Y, Zhang YL, Fan CX, J. Hazard. Mater., 198, 362 (2011)
  108. Millero F, et al., ‘Adsorption and Desorption of Phosphate on Calcite and Aragonite in Seawater’, p. 24, 2000.
  109. Yagi S, Fukushi K, J. Mineral. Petrol. Sci., 106(2), 109 (2011)
  110. Genz A, Kornmuller A, Jekel M, Water Res., 38(16), 3523 (2004)
  111. Mendez JC, Hiemstra T, ACS Earth Space Chem., 4(4), 545 (2020)
  112. Lin JW, Zhan YH, Wang H, Chu M, Wang CF, He Y, Wang XX, Chem. Eng. J., 309, 118 (2017)
  113. Atouei MT, Rahnemaie R, Kalanpa EG, Davoodi MH, Chem. Geol., 437, 19 (2016)
  114. Rietra RPJJ, Hiemstra T, van Riemsdijk WH, Environ. Sci. Technol., 35(16), 3369 (2001)
  115. Yao W, Millero FJ, Environ. Sci. Technol., 30(2), 536 (1996)
  116. Audette Y, ‘Phosphorus binding to soil organic matter via ternary complexes with calcium’, p. 10, 2020.
  117. Ioannou Z, Dimirkou A, Ioannou A, Water. Air. Soil Pollut., 224(3), 1374 (2013)
  118. Saha B, Griffin L, Blunden H, Environ. Geochem. Health, 32(4), 341 (2010)
  119. Chen D, Gao B, Wang H, Yang K, J. Taiwan Inst. Chem. Eng., 61, 181 (2016)
  120. Song XY, Pan YQ, Wu QY, Cheng ZH, Ma W, Desalination, 280(1-3), 384 (2011)
  121. Zhang C, Li YQ, Wang FH, Yu ZG, Wei JJ, Yang ZZ, Ma C, Li ZH, Xu ZY, Zeng GM, Appl. Surf. Sci., 396, 1783 (2017)
  122. Gunawardana B, Singhal N, Swedlund P, Environ. Eng. Res., 16(4), 187 (2011)
  123. Shubair T, Sep. Purif. Technol., 13 (2018).
  124. Velimirovic M, Carniato L, Simons Q, Schoups G, Seuntjens P, Bastiaens L, J. Hazard. Mater., 270, 18 (2014)
  125. Eljamal O, Thompson IP, Maamoun I, Schubair T, Eljamal K, Lueangwattanapong K, Sugihara Y, J. Mol. Liq., 299 (2020)
  126. Lalley J, Han C, Li X, Dionysiou DD, Nadagouda MN, Chem. Eng. J., 284, 1386 (2016)
  127. Tofik AS, Taddesse AM, Tesfahun KT, Girma GG, J. Environ. Chem. Eng., 4(2), 2458 (2016)
  128. Daou TJ, Begin-Colin S, Greneche JM, Thomas F, Derory A, Bernhardt P, Legare P, Pourroy G, Chem. Mater., 19(18), 4494 (2007)
  129. Hildebrant B, Nde-Tchoupe AI, Lufingo M, Licha T, Noubactep C, Processes, 8(3), 265 (2020)
  130. Moraci N, Ielo D, Bilardi S, Calabro PS, Can. Geotech. J., 53(6), 946 (2016)
  131. Xue R, Xu J, Gu L, Pan L, He Q, Water Air Soil Pollut., 229(5), 161 (2018)
  132. Zach-Maor A, Semiat R, Shemer H, Adsorption, 17(6), 929 (2011)
  133. Deliyanni E, Peleka E, Lazaridis N, Sep. Purif. Technol., 52(3) (2007)
  134. Mahardika D, Park HS, Choo KH, Chemosphere, 207, 527 (2018)
  135. Ramirez A, Giraldo S, Garcia-Nunez J, Florez E, Acelas N, J. Water Process Eng., 26, 131 (2018)
  136. Cheung KC, Venkitachalam TH, Chemosphere, 41(1-2), 7 (2000)
  137. Lechner LS, ‘Phosphorus removal from stormwater using zero-valent iron’, 2016.
  138. Erickson AJ, Gulliver JS, Weiss PT, Water Res., 46(9), 3032 (2012)
  139. Zeng L, Li X, Liu J, Water Res., 38(5), 1318 (2004)
  140. Shahid MK, Kim Y, Choi YG, Chem. Eng. Res. Des., 148, 169 (2019)
  141. White SA, Strosnider WHJ, Chase MEM, Schlautman MA, Ecol. Eng., 160 (2021)
  142. Wang C, Xu Y, Hou J, Wang P, Zhang F, Zhou Q, You G, Sci. Total Environ., 689, 1044 (2019)
  143. Bradley I, ‘Iron oxide amended biosand filters for virus removal’, Water Res., p. 10, 2011.
  144. Marsalek B, Jancula D, Marsalkova E, Mashlan M, Safarova K, Tucek J, Zbori Rl, Environ. Sci. Technol., 46(4), 2316 (2012)
  145. You Y, Han J, Chiu PC, Jin Y, Environ. Sci. Technol., 39(23), 9263 (2005)
  146. Fajardo C, Ortiz LT, Rodriguez-Membibre ML, Nande M, Lobo MC, Martin M, Chemosphere, 86(8), 802 (2012)
  147. Parveen S, Wani AH, Shah A, Devi HS, Bhat MY, Koka JA, Microb. Pathog., 115, 287 (2018)
  148. Wu DL, Shen YH, Ding AQ, Mahmood Q, Liu S, Tu QP, J. Hazard. Mater., 262, 649 (2013)
  149. Barthelemy K, Naille S, Despas C, Ruby C, Mallet M, J. Colloid Interface Sci., 262, 649 (2013)
  150. Boujelben N, Bouzid J, Elouear Z, Feki M, Jamoussi F, Montiel A, J. Hazard. Mater., 151, 103 (2008)
  151. Fang L, Zeng W, Xu L, Huang LZ, Chem. Eng. J., 388, 124 (2020)
  152. Peleka EN, Deliyanni EA, Desalination, 245(1-3), 357 (2009)
  153. Du X, Han Q, Li J, Li H, Journal of the Taiwan Institute of Chemical Engineers, 76, 167 (2017).
  154. Long F, Gong JL, Zeng GM, Chen L, Wang XY, Deng JH, Niu QY, Zhang HY, Zhang XR, Chem. Eng. J., 171(2), 448 (2011)
  155. Ma F, Zhao B, Diao J, Jiang Y, Zhang J, RSC Adv., 10(64), 39217 (2020)
  156. Pepper RA, Couperthwaite SJ, Millar GJ, Journal of Water Process Engineering, 25, 138 (2018).
  157. Sellner BM, Hua G, Ahiablame LM, J. Environ. Manage., 233, 595 (2019)
  158. Sibrell PL, Tucker TW, Water Air Soil Pollut., 223, 5505 (2012)
  159. de Sousa AF, Braga TP, Gomes ECC, Valentini A, Longhinotti E, Chem. Eng. J., 210, 143 (2012)
  160. Zhou Q, Wang X, Liu J, Zhang L, Chem. Eng. J., 200-202, 619 (2012)
  161. Li GL, Gao S, Zhang GS, Zhang XW, Chem. Eng. J., 235, 124 (2014)
  162. Zach-Maor A, Semiat R, Shemer H, J. Colloid Interface Sci., 357(2), 440 (2011)