화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.104, 73-84, December, 2021
Biodegradable cross-linked poly(L-lactide-co-e-caprolactone) networks for ureteral stent formed by gamma irradiation under vacuum
E-mail:
The poly(L-lactide-co-e-caprolactone) (PLCL) ureteral stent creeps and loses shape stability, increasing the risk of stent tube dislocation. The rubbery biodegradable cross-linked PLCL networks were prepared through gamma irradiation under vacuum in the presence of trimethylolpropane triacrylate (TMPTA), pentaerythritol tetraacrylate (PET4A), and pentaerythritol triacrylate (PETA). At a standard sterilization dose of 25 kGy, the gel content and network density of PLCL networks increased with increasing crosslinking agent content (1, 3, 5, 7 wt%), and crosslinking efficiency decreased in the order of PETA > PET4A > TMPTA. The average molecular weight (Mc ) between two crosslinks ranged from 2000 to 105 g/mol. To perform the beneficial semi-interpenetrated polymer network and characterized by the principle, the networks were processed in several doses (25, 50, 75, 100, and 125 kGy). In place of the Charlesby-Pinner equation, the irradiation cross-linking followed the Chen-Liu-Tang equation. The PLCL network with 7 wt% PETA had a gel fraction of 83%, tensile strength of 34.7 MPa, and tensile set value as low as 5%. Furthermore, degradation in vitro was slowed down. Thus, PLCL networks with appropriate elasticity and flexibility, inherent biodegradability, and excellent biocompatibility can provide a promising alternative method for soft tissue repair engineering, such as ureteral stents.
  1. Baskin LS, J. Urol., 163(3), 951 (2000)
  2. Guo HL, Jia ZM, Wang L, Bao XQ, Huang YC, Zhou JM, Xie H, Yang XJ, Chen F, Asian J. Androl., 21(4), 381 (2019)
  3. Niu YQ, Liu GC, Chen CB, Fu M, Fu W, Zhao Z, Xia HM, Stadler FJ, Biomater. Sci., 8(8), 2164 (2020)
  4. Liu XL, Hou PJ, Liu S, Qi J, Feng SM, Zhang LF, Ma P, Bai W, J. Polym. Res., 28, 5 (2021)
  5. Phuong PTM, Won HJ, Robby AI, Kim SG, Im GB, Bhang SH, Lee G, Park SY, ACS Appl. Mater. Interfaces., 12(34), 37929 (2020)
  6. Ryplida B, In I, Park SY, ACS Appl. Mater. Interfaces., 12(46), 51766 (2020)
  7. Shit A, Heo SB, In I, Park SY, ACS Appl. Mater. Interfaces., 12(30), 34105 (2020)
  8. Nishu SD, Park SB, Ji YH, Han I, Key JH, Lee TK, J. Ind. Eng. Chem., 84, 297 (2020)
  9. Raya-Rivera A, Esquiliano DR, Yoo JJ, Lopez-Bayghen E, Soker S, Atala A, Lancet., 377(9772), 1175 (2011)
  10. Dorati R, Colonna C, Tomasi C, Genta I, Bruni G, Conti B, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 34, 130 (2014)
  11. Guo T, Noshin M, Baker HB, Taskoy E, Meredith SJ, Tang QQ, Ringel JP, Lerman MJ, Chen Y, Packer JD, Fisher JP, Biomaterials, 185, 219 (2018)
  12. Kang MS, Song SJ, Cha JH, Cho YO, Lee HU, Hyon SH, Lee JH, Han DW, J. Ind. Eng. Chem., 92, 226 (2020)
  13. Zhu Y, Leong MF, Ong WF, Park MBC, Chian KS, Biomaterials, 28(5), 861 (2007)
  14. Su Y, Su QQ, Liu W, Lim M, Venugopal JR, Mo XM, Ramakrishna S, Al-Deyab SS, El-Newehy M, Acta Biomater., 8(2), 763 (2012)
  15. Daranarong D, Thapsukhon B, Swanandy N, Molloy R, Punyodom W, Foster LJR, Polym. Int., 63(7), 1254 (2014)
  16. Xu Y, Wu JL, Wang HM, Li HQ, Di N, Song L, Li ST, Li DW, Xiang Y, Liu W, Mo XM, Zhou Q, Tissue Eng. Part C-Methods., 19(12), 925 (2013)
  17. Jundzill A, Pokrywczynska M, Adamowicz J, et al., Med. Sci. Monitor., 23, 1540 (2017)
  18. Pokrywczynska M, Jundzill A, Adamowicz J, et al., PLoS One., 9(8), 12 (2014)
  19. Sartoneva R, Nordback PH, Haimi S, Grijpma DW, Lehto K, Rooney N, Seppanen-Kaijansinkko R, Miettinen S, Lahdes-Vasama T, Tissue Eng. Part A., 24(1-2), 117 (2018)
  20. Zhang Y, Qi J, Chen HC, Xiong CD, Colloids Surf. A: Physicochem. Eng. Asp., 610, 11 (2021)
  21. Finney RP, J. Urology., 120(6), 678 (1978)
  22. Dyer RB, Chen MY, Zagoria RJ, Regan JD, Hood CG, Kavanagh PV, Radiographics., 22(5), 1005 (2002)
  23. Paick SH, Park HK, Oh SJ, Kim HH, Urology., 62(2), 214 (2003)
  24. Saif MJ, Naveed M, Asif HM, Akhtar R, J. Ind. Eng. Chem., 60, 218 (2018)
  25. van Bochove B, Spoljaric S, Seppala J, de Anda AR, Polym. Test., 90, 10 (2020)
  26. An JC, J. Ind. Eng. Chem., 15(2), 148 (2009)
  27. Gad YH, Magida MN, El-Nahas HH, J. Ind. Eng. Chem., 16(6), 1019 (2010)
  28. Kim YH, Choi SJ, Park HJ, Lee JH, J. Ind. Eng. Chem., 20(4), 1834 (2014)
  29. Shankar S, Khodaei D, Lacroix M, Food Hydrocolloids, 117 (2021)
  30. Miao MH, Hawkins SC, Cai JY, Gengenbach TR, Knott R, Huynh CP, Carbon, 49(14), 4940 (2011)
  31. Javadian H, Angaji MT, Naushad M, J. Ind. Eng. Chem., 20(5), 3890 (2014)
  32. Martinez-Morlanes MJ, Castell P, Alonso PJ, Martinez MT, Puertolas JA, Carbon, 50, 2442 (2012)
  33. Bat E, Feijen J, Grijpma DW, Biomacromolecules, 11(10), 2692 (2010)
  34. Burnea LC, Zaharescu T, Dumitru A, Plesa I, Ciuprina F, Radiat. Phys. Chem., 94, 156 (2014)
  35. Bat E, van Kooten TG, Feijen J, Grijpma DW, Acta Biomater., 7(5), 1939 (2011)
  36. Schuller-Ravoo S, Feijen J, Grijpma DW, Acta Biomater., 8(10), 3576 (2012)
  37. Quynh TM, Mitomo H, Nagasawa N, Wada Y, Yoshii F, Tamada M, Eur. Polym. J., 43(5), 1779 (2007)
  38. Mitomo H, Kaneda A, Quynh TM, Nagasawa N, Yoshii F, Polymer, 46(13), 4695 (2005)
  39. Qin YS, Ma QW, Wang XH, Sun JZ, Zhao XJ, Wang FS, Polym. Degrad. Stabil., 92(10), 1942 (2007)
  40. Yoshii F, Darwis D, Mitomo H, Makuuchi K, Radiat. Phys. Chem., 57(3-6), 417 (2000)
  41. Naderi N, Rastegar S, Mohseni M, Khorasani M, Polymer, 153, 391 (2018)
  42. Liu M, Zhou D, He YB, Fu YZ, Qin XY, Miao C, Du HD, Li BH, Yang QH, Lin ZQ, Zhao TS, Kang FY, Nano Energy., 22, 278 (2016)
  43. Qiu XL, Li W, Song GL, Chu XD, Tang GY, Sol. Energy Mater. Sol. Cells, 98, 283 (2012)
  44. Amin M, Ali M, Khattak A, Sci. Eng. Compos. Mater., 25(4), 753 (2018)
  45. Liu XL, Feng SM, Wang X, Qi J, Lei D, Li YD, Bai W, Turk. J. Chem., 44(5), 1430 (2020)
  46. Fernandez J, Etxeberria A, Sarasua JR, J. Mech. Behav. Biomed. Mater., 9, 100 (2012)
  47. Li X, Mignard N, Taha M, Prochazka F, Chen JD, Zhang SM, Becquart F, Macromolecules, 52(17), 6585 (2019)
  48. Bai Y, Wang PQ, Bai W, Zhang LF, Li Q, Xiong CD, J. Polym. Environ., 23(3), 367 (2015)
  49. Patti A, Lecocq H, Serghei A, Acierno D, Cassagnau P, J. Ind. Eng. Chem., 96, 1 (2021)
  50. Privalko VP, Calleja FJB, Sukhorukov DI, Privalko EG, Walter R, Friedrich K, J. Mater. Sci., 34(3), 497 (1999)
  51. Liu XL, et al., Polym. Adv. Technol. 10, https://doi.org/10.1002/pat.5439.
  52. Balakshin M, Capanema EA, Zhu XH, Sulaeva I, Potthast A, Rosenau T, Rojas OJ, Green Chem., 22(13), 3985 (2020)
  53. Barsbay M, Guven O, Radiat. Phys. Chem., 169, 9 (2020)
  54. Yang J, An LJ, Dong LS, Teng FE, Feng ZL, Eur. Polym. J., 38(10), 2083 (2002)
  55. Charlesby A, Pinner SH, Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences., 249 (1258), 367 (1959).
  56. Zhu CM, Liang GZ, Fei JY, Ma XY, Zhang LB, Acta Polym. Sin., 2, 275 (2005)
  57. Malek P, Walczyk D, J. Manuf. Sci. E-T. Asme., 138, 2 (2016)
  58. Hsieh YF, Sahagian K, Huang F, Xu K, Patel S, Li S, Biomed. Mater., 12(6), 10 (2017)
  59. Laskin DL, Pendino KJ, Annu. Rev. Pharmacol., 35, 655 (1995)
  60. He J, Hu X, Xing L, Chen D, Peng L, Liang G, Xiong C, Zhang X, Zhang L, J. Ind. Eng. Chem., 99, 134 (2021)