화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.59, No.4, 565-573, November, 2021
활성탄에 의한 Brilliant Green과 Quinoline Yellow 염료의 흡착에 대한 등온선, 동력학, 열역학 및 경쟁흡착
Isotherm, Kinetic, Thermodynamic and Competitive for Adsorption of Brilliant Green and Quinoline Yellow Dyes by Activated Carbon
E-mail:
초록
활성탄에 의한 Brilliant Green(BG), Quinoline Yellow(QY) 염료의 흡착에 대한 등온선, 동력학, 열역학적 특성치와 경쟁흡착을 흡착제의 양, pH, 초기농도, 접촉시간 및 온도를 변수로 하여 수행하였다. BG와 QY는 가지고 있는 atomic nitrogen 이온(N+)의 영향으로 pH 11에서 92.4%의 최고 흡착율을 나타내었고, QY는 sulfite 이온(SO3-)의 영향으로 pH3에서 90.9%의 최고 흡착률을 나타냈다. 등온흡착 데이터로부터, BG의 경우는 Freundlich 등온식에 잘 맞아서 다분자층 흡착이었고, QY는 Langmuir 등온식이 가장 높은 일치도를 나타내어 주로 단분자층흡착이었다. Freundlich 식과 Langmuir 식의 분리계수는 활성탄에 의해 이들 염료를 효과적으로 처리할 수 있는 공정임을 나타냈다. Temkin 등온식에 의해 평가된 흡착 에너지는 활성탄에 의한 BG와 QY의 흡착이 물리 흡착임을 확인시켰다. 동력학적 실험결과는 유사 이차 반응속도식이 유사일차 반응속도식보다 일치도가 높았고 평형흡착량에 대한 오차도 더 작았다. 입자내 확산식을 이용하여 도시한 그래프는 2단계의 직선으로 나타났는데 기울기가 낮은 입자내 확산이 율속단계임을 확인하였다. 흡착공정의 활성화 에너지와 엔탈피 변화는 흡착과정이 비교적 수월하게 일어나며 흡열반응임을 나타냈다. 엔트로피 변화는 활성탄에 대한 BG와 QY 염료의 흡착이 진행됨에 따라 흡착시스템의 무질서도가 증가함을 나타냈고, Gibbs자유 에너지 변화로 부터 흡착반응이 온도가 높아질수록 자발성이 더 커진다는 것을 알았다. 혼합용액의 경쟁흡착 결과는 상대적으로 흡착률이 높은 QY가 BG에 의해 큰 방해를 받아 흡착률이 크게 감소하는 것으로 나타났다.
Isotherms, kinetics and thermodynamic properties for adsorption of Brilliant Green(BG), Quinoline Yellow(QY) dyes by activated carbon were carried out using variables such as dose of adsorbent, pH, initial concentration, contact time, temperature and competitive. BG showed the highest adsorption rate of 92.4% at pH 11, and QY was adsorbed at 90.9% at pH 3. BG was in good agreement with the Freundlich isothermal model, and QY was well matched with Langmuir model. The separation coefficients of isotherm model indicated that these dyes could be effectively treated by activated carbon. Estimated adsorption energy by Temkin isotherm model indicated that the adsorption of BG and QY by activated carbon is a physical adsorption. The kinetic experimental results showed that the pseudo second order model had a better fit than the pseudo first order model with a smaller in the equilibrium adsorption amount. It was confirmed that surface diffusion was a rate controlling step by the intraparticle diffusion model. The activation energy and enthalpy change of the adsorption process indicated that the adsorption process was a relatively easy endothermic reaction. The entropy change indicated that the disorder of the adsorption system increased as the adsorption of BG and QY dyes to activated carbon proceeded. Gibbs free energy was found that the adsorption reaction became more spontaneous with increasing temperature. As a result of competitive adsorption of the mixed solution, it was found that QY was disturbed by BG and the adsorption reduced.
  1. Park HO, Kim KJ, Choi JY, Li F, Wu Q, Shin WS, Korean Soc. Environ. Eng., 12, 866 (2007)
  2. Gupta VK, Ali I, Environ. Sci. Technol., 42, 766 (2008)
  3. Lee JJ, Korean Chem. Eng. Res., 58(3), 458 (2020)
  4. Lee JJ, Appl. Chem. Eng., 31(2), 164 (2020)
  5. Bhattacharyya KG, Sarma A, Dyes Pigment., 57, 211 (2003)
  6. Nandi BK, Goswami A, Purkait MK, J. Hazard. Mater., 161(1), 387 (2009)
  7. Kismir Y, Aroguz AZ, Chem. Eng. J., 172(1), 199 (2011)
  8. Mane VS, Babu PVV, Desalination, 273(2-3), 321 (2011)
  9. Rehman MSU, Munir M, Ashfaq M, Rashid N, Nazar MF, Danish M, Han JI, Chem. Eng. J., 228, 54 (2013)
  10. Kumar R, Barakat MA, Chem. Eng. J., 226, 377 (2013)
  11. Tavlieva MP, Genieva SD, Georgieva VG, Vlaev LT, J. Colloid Interface Sci., 409, 112 (2013)
  12. Mariah GK, Pak KS, Materials Today: Proceedings, 20, 488 (2020)
  13. Qi C, Chen H, Xu C, Xu Z, Chen H, Yang S, Li SS, He H, Sun C, Chemosphere, 260, 127681 (2020)
  14. Gupta VK, Mittal A, Gajbe V, J. Colloid Interface Sci., 284(1), 89 (2005)
  15. Salem MA, Al-Ghonemiy AF, Zaki AB, Appl. Catal. B: Environ., 91(1-2), 59 (2009)
  16. Zhao J, Zhang Y, Wu K, Chen J, Zhou Y, Food Chem., 128, 569 (2011)
  17. Gupta VK, Jain R, Agarwal S, Nayak A, Shrivastava M, J. Colloid Interface Sci., 366(1), 135 (2012)
  18. Rameshraja D, Srivastava VC, Kushwaha JP, Mall ID, Chem. Eng. J., 181-182, 343 (2012)
  19. Marrakchi F, Ahmed MJ, Khanday WA, Asif M, Hameed BH, J. Taiwan Inst. Chem. Eng., 71, 47 (2017)
  20. Zuo L, Song W, Shi T, Lv C, Yao J, Liu J, Weng Y, Microporous Mesoporous Mater., 200, 174 (2014)
  21. Saruchi, Kumar V, Arabian J. Chem., 12, 316 (2019)
  22. Edison D, Ramesh KS, Sivaramkumar MS, Velmurugan R, Intl. J. Trend Res. Dev., 3, 22 (2016)
  23. Lee JJ, Korean Chem. Eng. Res., 57(5), 679 (2019)
  24. Kim YS, Kim JH, J. Chem. Thermodyn., 130, 104 (2019)
  25. Al-Kadhi NS, Egypt. J. Aquat. Res., 45, 231 (2019)
  26. Hamza W, Dammak N, Hadjltaief HB, Eloussaief M, Benzina M, Ecotoxicol. Environ. Safe., 163, 365 (2019)
  27. A UI, Abdulraheem G, Bala S, Muhammad S, Abdullahi M, Int. Biodeterior. Biodegrad., 102, 265 (2015)
  28. Bayramoglu G, Arica MY, Korean J. Chem. Eng., 35(6), 1303 (2018)
  29. Xie G, Wang B, Yan H, J. Anhui Agri. Sci., 34, 4695 (2006)
  30. Murray AA, Ormeci B, J. Environ. Sci., 66, 310 (2018)