화학공학소재연구정보센터
Polymer(Korea), Vol.45, No.6, 832-840, November, 2021
Poly(ethylene glycol) 첨가에 따른 Poly(acrylamide-co-potassium methacrylate) 하이드로젤의 독성 중금속 이온에 대한 수분흡수, 자극반응 및 흡착 능력 조절
Adjusting Water Absorption, Stimulus-Response and Adsorption Capacity for Toxic Heavy Metal Ions of Poly(acrylamide-co-potassium methacrylate) Hydrogel by Poly(ethylene glycol) Addition
E-mail:
Hydrogels, composed of poly(acrylamide-potassium methacrylate), cross-linked with N,N'-methylene bis-acrylamide, and having different proportions of poly(ethylene glycol) were synthesized by a free radical copolymerization technique. The effect of the cross-linkage and poly(ethylene glycol) contents on swelling in water, diffusion kinetics of water in the hydrogel matrix, stimuli response to pH, ionic strength of the external solution, and capacity for chromium(III) and uranyl ions from polluted water samples were evaluated. The results show that the swelling in water decreased. Still, the diffusion rate of water in the copolymer matrix increased with an increase in the cross-linkage and an increase in the poly(ethylene glycol) amount under the conditions of this study. Poly(ethylene glycol) addition provided another tool to adjust the swelling, diffusion kinetics, and adsorption characteristics of the hydrogel. For example, poly(ethylene glycol) addition made the hydrogel adsorb uranyl ions from polluted water.
  1. Singha NR, Dutta A, Mahapatra M, Roy JSB, Mitra M, Deb M, Chattopadhyay PK, ACS Omega, 4, 1763 (2019)
  2. Tasar S, Orhan R, Polym. Korea, 44(1), 49 (2020)
  3. Inam R, Caykara T, Kantoglu O, Nucl. Instrum. Methods Phys. Res. Sect. B, 208, 400 2003.
  4. Wongjaikham W, Wongsawaeng D, Hosemann P, J. Nucl. Sci. Technol., 56, 541 (2019)
  5. Caykara T, Inam R, Ozyurek C, J. Polym. Sci. A: Polym. Chem., 39(2), 277 (2001)
  6. Angar NE, Aliouche D, Chem. Pap., 71, 1389 (2017)
  7. Bajpai SK, Dubey S, React. Funct. Polym., 62(1), 93 (2005)
  8. Heidari S, Esmaeilzadeh F, Mowla D, Ghasemi S, J. Pet. Explor. Prod. Technol., 8, 1331 (2018)
  9. Saraydin D, Isikver Y, Karadag E, Polym. Eng. Sci., 58(3), 310 (2018)
  10. Oucif A, Haddadine N, Zakia D, Bouslah N, Benaboura A, Beyaz K, Guedouar B, El-Shall MS, Polym. Bull.
  11. Yuan D, Jacquier JC, O’Riordan ED, Food Chem., 239, 1200 (2018)
  12. Tay JW, Choe DH, Mulchandani A, Rust, MK, J. Econ. Entom., 113, 2061 (2020)
  13. Ali SW, Zaidi SAR, J. Appl. Polym. Sci., 98(5), 1927 (2005)
  14. Omidian H, Hashemi SA, Askari F, Nafisi S, Iranian J. Polym. Sci. Technol., 3, 115 (1994)
  15. Khare AR, Peppas NA, Biomaterials, 16, 559 (1995)
  16. Castel D, Ricard A, Audebert R, J. Appl. Polym. Sci., 39, 11 (1990)
  17. Hosseinzadeh H, Alijani D, Polym. Korea, 38(5), 588 (2014)
  18. Mahdavinia GR, Pourjavadi A, Hosseinzadeh H, Zahuriaan MJ, Eur. Polym. J., 40, 1399 (2004)
  19. Liu Y, Cao X, Hua R, Wang Y, Liu Y, Pang C, Wang Y, Hydrometallurgy, 104, 150 (2010)
  20. Ali AEH, Shawky HA, El-Rehim HAA, Hegazy EA, Eur. Polym. J., 39, 2337 (2003)
  21. Akkaya R, Ulusoy U, J. Hazard. Mater., 151(2-3), 380 (2008)
  22. Kam E, Tasdelen B, Osmanlioglu AE, Radiat. Phys. Chem., 81, 618 (2012)
  23. CRC Handbook of Chemistry and Physics, 69th Edition; Weast, R. C., Ed.: CRC Press Inc.: Boca Rosa, 1988.
  24. Hennink WE, Van Nostrum CF, Adv. Drug. Deliv. Rev., 54, 13 (2002)
  25. Guilherme MR, Aouada FA, Fajardo AR, et al., Eur. Polym. J., 72, 365 (2015)
  26. Ricka J, Tanaka T, Macromolecules, 17, 2916 (1984)
  27. Zhou X, Weng L, Chen Q, Zhang J, Shen D, Li Z, Shao M, Xu J, Polym. Int., 52, 1153 (2003)
  28. Kiatkamjornwong S, Mongkolsawat K, Sonsuk M, Polymer, 43(14), 3915 (2002)
  29. Ion exchangers; Dorfner, K. Ed.: Walter de Gruyter: New York, 1991.