화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.33, No.1, 38-43, February, 2022
산소 플라즈마 처리된 활성탄소의 세슘 이온 흡착
Cesium Ions Adsorption of Activated Carbon Treated by Oxygen Plasma
E-mail:
초록
산소 플라즈마 처리에 따른 활성탄소의 산소 관능기 도입이 세슘 이온 흡착 특성에 미치는 영향에 대하여 고찰하였다. 산소 플라즈마 처리 시 주파수, 전력 및 산소 가스 유량은 각각 100 kHz, 80 W 및 60 sccm으로 고정하였으며, 반응시간을 변수로 수행하였다. 본 실험조건에서는 산소 가스와의 반응시간이 10분일 때 C-O-C 및 O=C-O 결합 내 산소 기능기 함량이 증가함에 따라 세슘 이온 흡착량이 증가하였다. 그러나 반응 시간이 15분일 때 산소 관능기 함량이 감소하게 되어 세슘 이온 흡착량이 오히려 감소되었다. 한편, 표면 처리된 활성탄소의 산소 함량과는 달리 그 비표면적 및 기공 특성은 산소 플라즈마 반응 시간에 따라 거의 영향을 받지 않았다. 결과적으로 산소 플라즈마 처리된 활성탄소는 미처리 활성탄소에 비하여 세슘 이온 제거율이 최대 97.3%까지 향상되었다. 이는 산소 플라즈마 처리로 활성탄소 표면에 도입된 C-O-C 및 O=C-O 결합 내 산소 기능기의 함량에 기인한 것으로 판단된다.
The effect of introducing oxygen functional groups by oxygen plasma treatment of activated carbon on adsorption properties of cesium ions was investigated. During the oxygen plasma treatment, the frequency, power, and oxygen gas flow rates were fixed at 100 kHz, 80 W, and 60 sccm, respectively, while the reaction time was varied. Under the experimental conditions, the amount of cesium ion adsorption increased as the content of oxygen groups on C-O-C and O=C-O bonds increased when the reaction time with oxygen gas was 10 minutes. However, when the reaction time increased to 15 minutes, the oxygen functional group content decreased resulting in the decrease of the adsorbed cesium ion amount. On the other hand, unlike the oxygen content of the surface-treated activated carbon, the specific surface area and pore properties were hardly affected by the oxygen plasma reaction time. As a result, the oxygen plasma-treated activated carbon improved the cesium ion removal rate by up to 97.3% compared to that of the untreated activated carbon. This is considered to be due to the content of oxygen groups on C-O-C and O=C-O bonds introduced on the surface of the activated carbon through oxygen plasma treatment.
  1. Kim JG, Kim MN, Malsawmdawngzela R, An CS, Lee SM, KSWST J. Water Treat., 27, 77 (2019)
  2. Kim GY, Jang SC, Song YH, Lee CS, Huh YS, Roh C, Korean J. Environ. Biol., 31, 304 (2016)
  3. Ahn JP, Lee MH, Econ. Environ. Geol., 51, 87 (2018)
  4. Vanderheyden SRH, Van Ammel R, Sobiech-Matura K, et al., J. Radioanal. Nucl. Chem., 310, 301 (2016)
  5. Dialynas E, Diamadopoulos E, Desalination, 238(1-3), 302 (2009)
  6. Bessbousse H, Rhlalou T, Verchere JF, Lebrun L, J. Membr. Sci., 307(2), 249 (2008)
  7. Pakzadeh B, Batista JR, Water Res., 45, 3055 (2011)
  8. Kobya M, Bioresour. Technol., 91(3), 317 (2004)
  9. Lalhmunsiama, Kim JG, Choi SS, Lee SM, Appl. Chem. Eng., 29(2), 127 (2018)
  10. Nishita H, Dixon D, Larson KH, Plant Soil., 17, 221 (1962)
  11. Iwanade A, Kasai N, Hoshina H, Ueki Y, Saiki S, Seko N, J. Radioanal. Nucl. Chem, 293, 703 (2012)
  12. Deng H, Li YX, Huang Y, Ma X, Wu L, Cheng TH, Chem. Eng. J., 286, 25 (2016)
  13. Alamudy HA, Cho K, Chem. Eng. J., 349, 595 (2018)
  14. Ding SY, Zhang LL, Li Y, Hou LA, J. Hazard. Mater., 368, 292 (2019)
  15. Tao QQ, Zhang X, Prabaharan K, Dai Y, Bioresour. Technol., 278, 456 (2019)
  16. Wang J, Zhuang S, Nucl. Eng. Technol., 52, 328 (2020)
  17. Talreja N, Kumar D, Verma N, J. Water Process Eng., 3, 34 (2014)
  18. Yang HJ, Li HY, Zhai JL, Sun L, Zhao Y, Yu HW, Chem. Eng. J., 246, 10 (2014)
  19. Nilchi A, Atashi H, Javid AH, Saberi R, Appl. Radiat. Isot., 65, 482 (2007)
  20. Mohan D, Pittman CU, J. Hazard. Mater., 137(2), 762 (2006)
  21. Montana M, Camacho A, Serrano I, Devesa R, Matia L, Valles I, J. Environ. Radioact., 125, 86 (2013)
  22. Marsh H, Rodriguez-Reinonso F, Activated carbon, 89 (2006).
  23. Liu SX, Chen X, Chen XY, Liu ZF, Wang HL, J. Hazard. Mater., 141(1), 315 (2007)
  24. Song EJ, Kim MJ, Han JI, Choi YJ, Lee YS, Appl. Chem. Eng., 30(2), 160 (2019)
  25. Yang BH, Kim CG, Kim JD, Ryu SK, Theor. Appl. Chem. Eng., 4, 2677 (1998)
  26. Kim JH, Kim SH, Lee GB, Kim H, Hong BU, Energy Environ., 14, 113 (2019)
  27. Park SJ, Shin JS, Kawasaki J, Appl. Chem. Eng., 14, 418 (2003)
  28. Park SJ, Kim KD, J. Colloid Interface Sci., 218(1), 331 (1999)
  29. Park SJ, Shin JS, J. Colloid Interface Sci., 264(1), 39 (2003)
  30. Mangun CL, De Barr JA, Economy J, Carbon, 39, 1689 (2001)
  31. Lee RE, Lim CH, Kim MJ, Lee YS, Appl. Chem. Eng., 32(1), 55 (2021)
  32. Lim JW, Jeong E, Jung MJ, Lee SI, Lee YS, Appl. Chem. Eng., 22(4), 405 (2011)
  33. Okajima K, Ohta K, Sudoh M, Electrochim. Acta, 50(11), 2227 (2005)
  34. Bai BC, Lee HU, Lee CW, Lee YS, Im JS, Chem. Eng. J., 306, 260 (2016)
  35. Jung MJ, Ko YY, Kim KH, Lee YS, Appl. Chem. Eng., 28(6), 638 (2017)
  36. Jung MJ, Park MS, Lee S, Lee YS, Appl. Chem. Eng., 27(3), 319 (2016)
  37. Park SH, Kim SD, Korean J. Chem. Eng., 35, 243 (1997)
  38. Morais A, Alves JPC, Lima FAS, Lira-Cantu M, Nogueira AF, J. Photonics Energy, 5, 057408 (2015)
  39. Uchimiya M, Chang S, Klasson KT, J. Hazard. Mater., 190(1-3), 432 (2011)
  40. Kiener J, Limousy L, Jeguirim M, Le Meins JM, Hajjar-Garreau S, Bigoin G, Ghimbeu CM, Materials, 12, 1253 (2019)