화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.39, No.3, 596-604, March, 2022
A RuO2IrO2 electrocatalyst with an optimal composition and novelmicrostructure for oxygen evolving in the single cell
E-mail:,
A highly active RuO2IrO2 electrocatalyst was developed via dip-coating/calcination method for oxygen evolution reaction (OER). The catalyst on Ti substrate with a 7/3 molar ratio between Ru and Ir showed the highest electrocatalytic activity for OER among composite samples in different molar ratios. Moreover, the properties of RuO2IrO2 grown on carbon paper were evaluated by proton exchange membrane water electrolysis single cell. Compared with the micron-particle structure of RuO2IrO2 catalyst on the Ti substrate, the catalyst grown on the carbon paper showed a novel nano dendrite shape and can be used directly as the gas diffusion electrode. Owing to the large surface area of the catalyst, the nano dendrite-shaped RuO2IrO2 catalyst exhibits excellent OER performance in the single cell. Furthermore, a cell voltage of 2.50 V is achieved under 200mA cm-2 at 30°C by using the optimal composition RuO2IrO2(Ru : Ir=7/3) and the commercial 20% Pt/C as anode and cathode, respectively.
  1. Kim H, Park H, Bang H, Kim SK, Korean J. Chem. Eng., 37, 1275 (2020)
  2. Wang M, Chen M, Yang Z, Liu C, Lee JK, Yang W, Wang X, Energy Convers. Manage., 191, 132 (2019)
  3. Kim H, Kim J, Han GH, Jang HW, Kim SY, Ahn SH, Korean J. Chem. Eng., 37, 1340 (2020)
  4. Brightman E, Dodwell J, Dijk NV, Hinds G, Electrochem. Commun., 52, 1 (2015)
  5. Rosestolato D, Fregoni J, Ferro S, de Battisti A, Electrochim. Acta, 139, 180 (2014)
  6. Beer HB, British Patent 1,147,442 (1969).
  7. Vercesi GP, Rolewicz J, Comninellis C, Thermochim. Acta, 176, 31 (1991)
  8. Aleksandar RZ, Edgar V, Justus M, Wolfgang S, J. Electroanal. Chem., 828, 63 (2018)
  9. Ye F, Li J, Wang X, Wang T, Li S, Wei H, Li Q, Christensen E, Int. J. Hydrogen Energy, 35, 8049 (2010)
  10. Hunter BM, Gray HB, Muller AM, Chem. Rev., 116, 14120 (2016)
  11. Lee Y, Suntivich J, May KJ, Perry EE, Shaohorn Y, J. Phys. Chem. Lett., 3, 399 (2012)
  12. Lodi G, Sivieri E, Battisti A, Trasatti S, J. Appl. Electrochem., 8, 135 (1978)
  13. Xu W, Haarberg GM, Seland F, Sunde S, Ratvik AP, Holmin S, Gustavsson J, Afvander A, Zimmerman E, Akre T, Corr. Sci.,, 150, 76 (2019)
  14. Chun D, Lim CR, Lee HS, Yoon WS, Lee TK, Kim DK, J. Water Process Eng., 26, 1 (2018)
  15. Marshall A, B��rresen B, Hagen G, Tsypkin M, Tunold R, Electrochim. Acta, 51, 3161 (2006)
  16. Marshall AT, Sunde S, Tsypkin M, Tunold R, Int. J. Hydrogen Energy, 32, 2320 (2007)
  17. Ye F, Hu W, Liu H, Liu J, Li J, Wang X, Yang J, Asia-Pac J. Chem. Eng., 8, 271 (2013)
  18. Lee J, Jeong B, Ocon JD, Curr. Appl. Phys., 13, 309 (2013)
  19. Liu G, Yang Z, Halim M, Li X, Wang M, Kim JY, Mei Q, Wang X, Lee JK, Energy Convers. Manage., 138, 54 (2017)
  20. Negishi N, Matsuzawa S, Takeuchi K, Pichat P, Chem. Mater., 19(15), 3808 (2007)
  21. McClune WF, Powder diffraction file alphabetical index inorganic phase, JCPDS, Swarthmore, PA (1980).
  22. Mazhari H, Jafarzadeh K, Mirali SM, J. Electroanal. Chem., 777, 67 (2016)
  23. Olivera-Sousa A, Silva MAS, Machado SAS, Avaca LA, Lima-Neto P, Electrochim. Acta, 45(27), 4467 (2000)
  24. Angelineta C, Trasatti S, Atanasoska LD, Atanasoski RT, J. Electroanal. Chem., 214(1-2), 535 (1986)
  25. Terezo AJ, Pereira EC, Electrochim. Acta, 44(25), 4507 (1999)
  26. Da Silva LA, Alves VA, Trasatti S, Boodts JFC, J. Electroanal. Chem., 427(1-2), 97 (1997)
  27. Kong FD, Sheng Z, Yin GP, Jing L, Xu ZQ, Int. J. Hydrogen Energy, 38, 9217 (2013)
  28. Liu F, Sun X, Chen X, Li C, Yu J, Polymers, 11(4), 629 (2019)
  29. Cai C, Han S, Tang Y, Sustain. Energy Fuels, 4, 2462 (2020)
  30. Ahmed J, Mao Y, Electrochim. Acta, 212, 686 (2016)
  31. Li G, Li S, Ge J, Liu C, Wei X, J. Mater. Chem. A, 5, 17221 (2017)
  32. Wang ZM, Liu P, Cao YP, Ye F, Du XZ, Int. J. Energy Res., 45, 5841 (2020)
  33. Hu J, Fu Y, Yang P, Guo L, Ye S, Ren X, He C, Zhang Q, Liu J, Mater. Charact., 177, 111201 (2021)
  34. Lee SW, Baik C, Pak C, Catal. Today, 358, 203 (2019)
  35. Pi Y, Shao Q, Wang P, Lv F, Gu S, Guo J, Huang X, Angew. Chem., 56, 4502 (2017)
  36. Tahira A, Ibupoto ZH, Vagin M, Aftab U, Abro MI, Willander M, Nur O, Catal. Sci. Technol., 9, 2879 (2019)
  37. Wang C, Jin L, Shang H, Xu H, Du Y, Chin. Chem. Lett., 32, 2108 (2020)
  38. Fan Y, Zhang X, Zhang Y, Xie X, Lu S, J. Colloid Interface Sci., 604, 508 (2021)
  39. Shan J, Guo C, Zhu Y, Chen S, Song L, Jaroniec M, Zheng Y, Qiao SZ, Chem, 5, 445 (2019)
  40. Tian Y, Wang S, Velasco E, Yang Y, O LC, Zhang L, Li X, Lin Y, Zhang Q, Chen L, Science, 23, 100756 (2020)
  41. Kundu MK, Mishra R, Bhowmik T, Kanrar S, Barman S, Int. J. Hydrogen Energy, 45, 6036 (2020)
  42. Zhang Y, Ma Q, Feng K, Guo J, Lin T, Ceram. Int., 46, 17640 (2020)