Journal of Industrial and Engineering Chemistry, Vol.107, 109-117, March, 2022
Effects of sulfur phase transition on moisture-induced damages in bitumen colloidal structure
E-mail:
Over the years, a reduced upper limit on sulfur content in marine-vehicle fuel has created a situation where a major diversion of sulfur into bitumen will be noticeable in the near future. In addition to the naturally occurring sulfur compounds in bitumen, sulfur is known as a promising admixture for the bitumen matrix. Despite the hydrophobic nature of elemental sulfur, which is commercially used as a modifier or extender in asphalt mixtures, the moisture susceptibility of sulfurized bitumen is one of the concerns challenging the use of sulfur in bitumen. In this study, we used laboratory experiments to examine how the effect of moisture conditioning varies between low-sulfur bitumen and high–sulfur bitumen. We also used molecular modeling in a framework of density functional theory (DFT) to gain insights into the molecular mechanisms by which a hydrophobic substance (elemental sulfur) acts as a hydrophile to attract water molecules and increase the moisture susceptibility of bitumen. The results show that high–sulfur bitumen has significantly more strain accumulation and shear thinning when exposed to water for an extended period. Based on our molecular-level analysis geared toward a DFT approach, the affinity of polymeric chains of sulfur to water could be a driving force for the moisture susceptibility of sulfurized bitumen. The presence of polymeric chains of sulfur, even at ambient temperature, can be attributed to that portion of polysulfides formed at high temperatures that remain in the matrix after dropping the temperature. Another mechanism proposed is the thermal decomposition of polysulfides upon heating, leading to the formation of thiols (RS-H), which can easily interact with water molecules. Considering the higher concentration of Sdouble bondO bonds in sulfurized bitumen, a part of the moisture susceptibility could also be attributed to those sulfur compounds that have been functionalized with hydrophilic groups, such as sulfonate, sulfoxide, or other functional groups containing oxygen. The high concentrations of sulfoxide group (Sdouble bondO), particularly in aged bitumen, and their ability to set up H-bonding interactions, make them potential candidates for effective interactions with water molecules.
- Soleimani M, Bassi A, Margaritis A, Biotechnol. Adv., 25, 570 (2007)
- Speight JG, The Chemistry and Technology of Petroleum, CRC Press, 2014.
- Speight JG, Asphalt materials science and technology-Chapter 4 Test Methods for Asphalt Binders, pp. 137-203, Butterworth-Heinemann, p: 137-203, 2015.
- Purcell JM, Juyal P, Kim DG, Rodgers RP, Hendrickson CL, Marshall AG, Energy Fuels, 21, 2869 (2007)
- Panda SK, Andersson JT, Schrader W, Angew. Chem.-Int. Edit., 121, 1820 (2009)
- Shi Q, Pan N, Liu P, Chung KH, Zhao S, Zhang Y, Xu C, Energy Fuels, 24, 3014 (2010)
- Brons G, Yu JM, Energy Fuels, 9, 641 (1995)
- Fahim MA, Al-Sahhaf TA, Elkilani A, Fundamentals of petroleum refining, Elsevier, (2009).
- Petrossi U, in Modifying bitumens, U.S. Patent No. 3803066, (9 Apr. 1974).
- Garrigues C, Vincent P, Sulfur/Asphalt Binders for Road Construction, ACS Publications, 1975.
- Wen G, Zhang Y, Zhang Y, Sun K, Chen Z, J. Appl. Polym. Sci., 82, 989 (2001)
- Fritschy G, Papirer E, Chambu C, Rheol. Acta, 20, 78 (1981)
- Zhang J, Sakhaeifar MS, Little DN, Int. J. Pavement Eng., 1, 9 (2020)
- Sakib N, Bhasin A, Islam MK, Khan K, Khan MI, Int. J. Pavement Eng., 1, 12 (2019)
- Strickland D, Colange J, Martin M, Deme I, Proc. Int. Soc. Asphalt Pave., (2008).
- Bukowski J, Youtcheff J, Harman T, TechBrief: An Alternative Asphalt Binder, Sulfur-Extended Asphalt (SEA), Federal Highway Administration, 2012.
- Cocurullo A, Grenfell J, Yusof NIM, Airey G, Fatigue Characteristics of Sulphur Modified Asphalt Mixtures, Springer, pp. 783-792, 2012.
- Strickland D, Colange J, Shaw P, Pugh N, Study of the Low-Temperature Properties of Sulphur Extended Asphalt Mixtures, 2008.
- Nicholls J, Review of Shell Thiopave sulphur-Extended Asphalt Modifier, 2009.
- Zhang J, Sakhaeifar M, Little DN, Bhasin A, Kim YR, J. Mater. Civ. Eng., 30, 4018311 (2018)
- Mousavi M, Hung AM, Fini EH, ACS Sustainable Chem. Eng., 9, 9486 (2021)
- Syroezhko A, Begak OY, Fedorov V, Gusarova E, Russ. J. Appl. Chem., 76, 491 (2003)
- Gawel I, Chapter 19 Sulphur-Modified Asphalts, Yen TF, Chilingarian GV, Eds., pp. 515-535, Elsevier, (2000).
- Faramarzi M, Golestani B, Lee KW, Constr. Build. Mater., 133, 534 (2017)
- Timm DH, Robbins MM, Willis JR, Tran N, Taylor AJ, in Evaluation of Mixture Performance and Structural Capacity of Pavements Utilizing Shell Thiopave : Phase II: Construction, Laboratory Evaluation and Full-Scale Testing of Thiopave Test Sections-Final Report, 2012.
- Shafabakhsh G, Faramarzi M, Sadeghnejad M, Constr. Build. Mater., 98, 456 (2015)
- Taylor AJ, Tran NH, May R, Timm DH, Robbins MM, Powell B, J. Assoc. Asphalt Paving Technol., 79, 403 (2010)
- Cooper SB III, Mohammad LN, Elseifi MA, J. Mater. Civ. Eng., 23, 1338 (2011)
- Harman T, Youtcheff J, Bukowski J, in An Alternative Asphalt Binder, Sulfur- Extended Asphalt (SEA), pp. 1?13, United States. Federal Highway Administration, (2012).
- Obando C, Oldham D, Kaloush E, Fini E, Obando C, Oldham D, Kaloush E, Fini E, Proc., Transportation Research Board. Washington, DC: Transportation Research Board, 1-10, (2020).
- Rajib AI, Pahlavan F, Fini EH, J. Clean Prod., 270, 122501 (2020)
- Oldham DJ, Fini EH, Constr. Build. Mater., 265, 120289 (2020)
- Choi S, Choi SQ, Kim JD, Nho NS, Energy Fuels, 31, 9240 (2017)
- AASHTO T, American Association of State Highway and Transportation Officials, Washington, DC, (2019).
- Delley B, J. Chem. Phys., 92, 508 (1990)
- Delley B, J. Chem. Phys., 113, 7756 (2000)
- Perdew JP, Burke K, Ernzerhof M, Phys. Rev. Lett., 77, 3865 (1996)
- Grimme S, Wiley Interdiscip. Rev. Comput. Mol. Sci., 1, 211 (2011)
- Monkhorst HJ, Pack JD, Phys. Rev. B, 13, 5188 (1976)
- Warren DS, Gimarc BM, J. Phys. Chem., 97, 4031 (1993)
- Diez S, Hoefling A, Theato P, Pauer W, Polymer, 9, 59 (2017)
- Pla?ienka D, Cifra P, Martonak R, J. Chem. Phys., 142, 154502 (2015)
- Zhang Y, Glass RS, Char K, Pyun J, J. Polym. Sci. A: Polym. Chem., 10, 4078 (2019)
- Dondi D, Buttafava A, Zeffiro A, Palamini C, Lostritto A, Giannini L, Faucitano A, Eur. Polym. J., 62, 222 (2015)
- Fairbrother F, Gee G, Merrall G, J. Polym. Sci., 16, 459 (1955)
- Klement W Jr, J. Polym. Sci. B: Polym. Phys., 12, 815 (1974)
- Meyer B, Chem. Rev., 76, 367 (1976)
- Steudel R, Passlack-Stephan S, Holdt G, Zeitschrift fur anorganische und: allgemeine Chemie, 517, 7 (1984)
- http://rruff.geo.arizona.edu/AMS/result.phpmineral=sulphur, accessed Nov. 2, 2021
- Abrahams SC, Acta Crystallogr. Sect. A, 8, 661 (1955)
- Rettig S, Trotter J, Acta Crystallogr. Sect. C-Cryst. Struct. Commun., 43, 2260 (1987)
- Crichton W, Vaughan G, Mezouar M, Zeitschrift fur Kristallographie-Crystalline Materials, 216, 417 (2001)
- Griebel JJ, Glass RS, Char K, Pyun J, Prog. Polym. Sci, 58, 90 (2016)
- Worthington MJ, Kucera RL, Chalker JM, Green Chem., 19, 2748 (2017)
- Tarbell D, The Mechanism of Oxidation of Thiols to Disulfides, Elsevier, pp. 97-102, 1961.
- Liu G, Niu P, Yin L, Cheng HM, J. Am. Chem. Soc., 134, 9070 (2012)
- Parvez MA, Al-Mehthel M, Al-Abdul Wahhab HI, Hussein IA, J. Appl. Polym. Sci., 131, 40046 (2014)
- van Bergen LA, Roos G, De Proft F, J. Phys. Chem. A, 118, 6078 (2014)
- Han Y, Zhang Y, Xu C, Hsu CS, Fuel, 221, 144 (2018)
- Sathiyamoorthy VN, 2021.
- Zhong J, Zhu C, Li L, Richmond GL, Francisco JS, Zeng XC, J. Am. Chem. Soc., 139, 17168 (2017)
- Mousavi M, Fini EH, Fuel, 287 (2021)
- Mirhosseini AF, Tahami SA, Hoff I, Dessouky S, Ho CH, Constr. Build. Mater., 227, 116465 (2019)
- Zahoor M, Nizamuddin S, Madapusi S, Giustozzi F, J. Clean Prod., 123304 (2020)
- Ziari H, Moniri A, Bahri P, Saghafi Y, Petrol. Sci. Technol., 37, 2355 (2019)