화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.5, 569-575, August, 2001
마이크로웨이브 에너지를 도입한 Styrene/Acrylonitrile 공중합 특성
Microwave Energy Effect in Styrene/Acrylonitrile Copolymerization
E-mail:
초록
마이크로웨이브 에너지를 가열원으로 사용하는 반응기를 설계하였다. 마이크로웨이브 power를 130, 195, 260 W로, 조사시간은 10 min에서 140 min까지 변화시키면서 styrene과 acrylonitile의 용액공중합을 수행하였다. Styrene 조성에 따른 전환율과 분자량 측정을 통해 styrene 몰분율 0.2의 조건에서 비교적 높은 분자량과 높은 전환율을 나타냈으며, 마이크로웨이브 조사시간에 따라 SAN (mole fraction of styrene = 0.2)의 전환율은 증가되었고 130 W, 120 min 에서 40.92%의 가장 높은 전환율을 나타내므로써 마이크로웨이브 공중합이 기존의 용액중합공정에 비해 더 빠른 시간 내에 높은 전환율에 도달할 수 있음이 확인되었다. 또한 중합된 SAN은 Kelen-Tudos법과 Fineman-Ross법을 이용하여 계산된 반응성 비를 통해 교대공중합체로 예측되었다. 따라서 마이크로웨이브 에너지를 이용한 공중합은 기존의 중합방식에 비해 중합 시간의 단축과 효율의 향상을 꾀할 수 있는 경제적인 공정의 가능성을 확인할 수 있었다.
Copolymerization using microwave energy, has many advantages such as notable time savings, solvent savings and cost savings. The main reason is that microwave energy has internal heating effect in dielectric material. In this study, the styrene/scrylonitrile solution copolymerization was rapidly carried out using microwave energy. The irradiation power of microwave was regulated at the 130, 195 and 260 W, and irradiation time was varied in the range of 10 to 140 min. The conversion of SAN decreased as mole fraction of styrene, and increased. The highest conversion appeared at 0.2 mole fraction of styrene, the average molecular weight of SAN was very large at this condition. The conversion of SAN (mole fraction of styrene = 0.2) increased as irradiation time increased, and the maximum conversion was 40.92% at 130 W of microwave irradiation power, and 120 min of irradiation time. This result has shown that the conversion was higher and copolymerization time was shorter than a conventional heating method (no use of microwave energy). From the calculated reactivity ratio with Kelen-Tudos and Fineman-Ross method, the SAN was deduced to the alternating copolymer type. In comparison with a thermal heating method, the introduction of microwave energy shorened copolymerization time and improved copolymerization efficiency.
  1. Park KA, Lee SB, Hong IK, J. Korean Ind. Eng. Chem., 11(6), 566 (2000)
  2. Kim WI, Lee SB, Hong IK, J. Korean Ind. Eng. Chem., 11(7), 706 (2000)
  3. Correa R, Gonzalez G, Dougar V, Polymer, 39(6-7), 1471 (1998) 
  4. Lee SB, Lee KM, Park KA, Hong IK, J. Korean Ind. Eng. Chem., 11(1), 99 (2000)
  5. Liu DS, Padias AB, Hall HK, Macromolecules, 28(2), 622 (1995) 
  6. Kingston HM, Haswell SJ, "Microwave-Enhanced Chemistry", ACS, Washington (1997)
  7. Liu Y, Lu Y, Liu SM, Yin YQ, Catal. Today, 51(1), 147 (1999) 
  8. Cantow MJR, "Polymer Fractionation", Academic press, London (1967)
  9. Shashidhar GVS, Sundaram EV, J. Polym. Sci., 28, 157 (1990)
  10. Ramelow U, Baysal BM, J. Appl. Polym. Sci., 32, 5865 (1986) 
  11. Ordian G, "Principles of Polymerization" John Wiley & Sons, Inc., Canada (1991)
  12. Kim NS, Seul SD, J. Ind. Eng. Chem., 2(2), 122 (1996)
  13. Friedman HL, J. Polym. Sci. C-Polym. Lett., 6, 183 (1963)