화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.13, No.1, 46-50, February, 2002
HEMA 변성 폴리우레탄 수분산체의 합성과 물성에 관한 연구
Synthesis and Mechanical Properties of HEMA Modified Polyurethane Dispersion
초록
2-Hydroxyethyl methacrylate (HEMA) 변성 폴리우레탄 수분산체(PUD)를 poly(tetramethylene ether) glycol (PTMG), toluene 2,4-diisocyanate (TDI), dimethyol propionic acid (DMPA), 변성체로 2-hydroxylethyl methacrylate (HEMA)을 사용하여 합성하였다. HEMA 함량 변화에 따른 PUD의 물성 및 기계적 특성은 differential scanning calorimeter (DSC), FT-IR, GPC, universal testing machine (UTM), particle analyzer 등을 사용하여 측정하였다. PUD에 있어서 HEMA 함량을 polyol mole 기준으로 0~10%로 증가함에 따라 가교 전, 후에 입자 크기는 52 nm~650 nm 범위에서 140 nm~960 nm 범위로 증가하였으며, 입자분포는 균일하지 않았다. 또한 [NCO]/[OH] 몰비를 1.4, 1.8, 2.2로 증가시키는 동시에 HEMA 함량을 polyol mole 기준으로 0~10%로 변화시켜 합성한 PUD의 분자량은 [NCO]/[OH] 몰비를 증가시킴에 따라 감소하였으나 HEMA의 함량에는 큰 영향을 받지 않았다. 그러나 HEMA에 기인하는 가교 반응의 영향으로 분자량은 증가하였다. HEMA 함량 증가에 따른 유리전이온도(Tg) 변화는 크게 나타나지 않았다. 또한, 인장 강도는 증가하였으나 신장율은 감소하였다.
2-Hydroxyethyl methacrylate (HEMA) modified polyurethane dispersions (PUD) was prepared from the poly(tetramethylene ether) glycol(PTMG), toluene 2,4-diisocyanate (TDI), dimethyol propionic acid (DMPA), and 2-hydroxylethyl methacrylate (HEMA), as a modifier, Differential scanning calorimeter (DSC), FT-IR, GPC, universal testing machine (UTM), and particle analyzer were utilized to characterize the physical and mechanical properties of PUD according to HEMA contents. As the content of HEMA in PUD increased, the particle size increased, before and after crosslinking, but the particle size were not evenly distributed. PUD was synthesized by increasing [NCO]/[OH] mole ratio to 1.4, 1.8, 2.2, while varying the content of HEMA to be 0~10% of the standard of polyol mole; the molecular weight of PUD was reduced as [NCO]/[OH] mole ratio increased, but it was not greatly affected by the change of HEMA content. The molecular weight of PUD, however, was increased by the effect of crosslinking, which was caused by HEMA. Increasing HEMA content, also increased tensile strength but the elongation at break decreased. Glass transition temperature (Tg), however, did not change significantly by change in the content of HEMA.
  1. Oeartel G, Polyurethane Handbook, Hanser Publishers, New York (1985)
  2. Oh YS, Lee YM, Kim BK, Polym.(Korea), 16(6), 715 (1992)
  3. Kim BK, Lee SY, Lee JS, Baek SH, Choi YJ, Lee JO, Xu M, Polymer, 39(13), 2803 (1998) 
  4. Dieterich D, Prog. Org. Coat., 9, 281 (1981) 
  5. Cheng IW, Nomura M, Kim JH, Macromol. Chem. Phys., 201, 2221 (2000) 
  6. Hepburn C, Polyurethane Elastomers, 2nd Ed., Elsevier Science Publishing, Co, New York (1992)
  7. U.S. Patent, 4,305,858 (1981)
  8. U.S. Patent, 5,508,340 (1996)
  9. U.S. Patent, 5,504,145 (1996)
  10. Nomula S, Cooper SL, Macromolecules, 34(8), 2653 (2001) 
  11. Kim BK, Lee JC, Polymer, 37(3), 469 (1996) 
  12. Snell FD, Ettre LS, Encyclopedia of Industrial Chemical Analysis, Interscience Publishers, 19, 272 (1979)
  13. Van Krevelen DW, Properties of Polymers, 3rd ed., Elsevier, New York (1990)
  14. Lee KH, Kim BK, Polymer, 37(11), 2251 (1996) 
  15. Dieterich D, J. Oil Col. Chem. Assoc., 53, 363 (1970)