화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.13, No.1, 82-86, February, 2002
모의 방사성 용액에서 α-benzoinoxime에 의한 99Mo의 침전 분리
Precipitation Separation of 99Mo by α-Benzoinoxime in Simulated Radioactive Solution
E-mail:
초록
본 연구에서는 1 M 질산과 8성분계(Mo, I, Ru, Zr, Ce, Cr, Nd, Sr)로 구성된 모의 용액에 이들 원소의 tracer급 방사성 동위원소를 첨가하여 α-benzoinoxime의 첨가 방법과 생성된 침전물의 용해 방법을 달리하여 99Mo의 회수율과 기타 핵종들의 제거율을 조사하였다. 99Mo는 100% 침전되어 첨가 방법에 관계없이 α-benzoinoxime으로 완전히 분리할 수 있었다. α-Benzoinoxime의 첨가 방법 등의 물리적인 방법으로는 131I, 103Ru, 95Zr와 같은 핵종들의 공침 거동에 영향을 끼치지 못하였다. α-Benzoinoxime에 의한 99Mo의 침전 공정은 회분식 조건에서 침전된 침전물을 0.4 N NaOH 용액에서 20 min간 용해하는 공정이 가장 적당하였다. 이 조건에서의 99Mo의 회수율은 97.1%, 기타 핵종들의 제염 계수는 131I은 4.8, 103Ru은 45.5, 95Zr는 27.8이었으며, 다른 핵종들은 100% 제거되었다.
Separation efficiency of molybdenum-99 and removal of the other nuclides were investigated according to adding methods of α-benzoinoxime and the dissolution methods of precipitate. The simulated radioactive solution consisted of 1 M nitric acid containing eight elements (Mo, I, Ru, Zr, Ce, Cr, Nd, Sr) and their corresponding radioactive tracers. It was found that molybdenum-99 precipitated 100%, and separated the most regardless of adding methods used. The physical method of varying an adding method of α-benzoinoxime did not affect the precipitation behavior of molybdenum-99 and the other nuclides: iodine-131, ruthenium-103, and zirconium-95. The optimum condition of the molybdenum-99 precipitation process was the precipitation formed by the batch type addition of α-benzoinoxime that was dissolved in 20 min in 0.4 M sodium hydroxide. At this condition, the yield of molybdenum-99 was 97.1%, and the decontamination factor of iodine-131, ruthenium-103, and zirconium-95 was 4.8, 45.5, and 27.8, respectively. The other nuclides were also mostly removed.
  1. Langton MA, Trans. Am. Nucl. Soc., 72, 134 (1995)
  2. Cheng WL, Lee CS, Chen CC, Ting G, Radiochim. Acta, 47, 69 (1989)
  3. Iturbe JL, Appl. Radiat. Isot., 41(7), 693 (1990)
  4. IAEA, Fission Molybdenum for Medical Use, IAEA-TECDOC-515 (1989)
  5. Bourges J, Madic C, Koehly G, Nguyen TH, Baltes D, Landesman C, Nucl. Tech., 113, 204 (1996)
  6. Sameh AA, Hans JA, Radiochim. Acta, 41, 65 (1987)
  7. Ejaz E, Mamoon AM, Qureshi MA, Appl. Radiat. Isot., 39(1), 71 (1988)
  8. Wei T, Cheng WL, Ting G, Solv. Extr. Ion Exch., 2(3), 435 (1984)
  9. Sivaramakrihan CK, Jadhay AV, Raghuraman K, Raman S, Nair PS, Ramaniah MV, Preparation of High Purity Fission Produced Molybdeum-99, Rep. BARC-847 (1976)
  10. U.S. Patent, 3,940,318 (1973)
  11. Cheng WL, Lee CS, Chen CC, Wang YM, Ting G, Appl. Radiat. Isot., 40(4), 315 (1989)
  12. Hwang DS, Choung WM, Kim YK, Lee KI, Park JH, Park KB, Park SJ, J. Korean Ind. Eng. Chem., 11(6), 632 (2000)
  13. Scadden EM, Ballou NE, The Radiochemistry of Molybdenum, 6, Subcommittee on Radiochemistry National Academy of Sciences-National Research Council, Washington D.C. (1960)
  14. Hwang DS, Choung WM, Kim YK, Lee KI, Park JH, J. Korean Ind. Eng. Chem., 11(3), 266 (2000)