Journal of the Korean Industrial and Engineering Chemistry, Vol.13, No.1, 82-86, February, 2002
모의 방사성 용액에서 α-benzoinoxime에 의한 99Mo의 침전 분리
Precipitation Separation of 99Mo by α-Benzoinoxime in Simulated Radioactive Solution
E-mail:
초록
본 연구에서는 1 M 질산과 8성분계(Mo, I, Ru, Zr, Ce, Cr, Nd, Sr)로 구성된 모의 용액에 이들 원소의 tracer급 방사성 동위원소를 첨가하여 α-benzoinoxime의 첨가 방법과 생성된 침전물의 용해 방법을 달리하여 99Mo의 회수율과 기타 핵종들의 제거율을 조사하였다. 99Mo는 100% 침전되어 첨가 방법에 관계없이 α-benzoinoxime으로 완전히 분리할 수 있었다. α-Benzoinoxime의 첨가 방법 등의 물리적인 방법으로는 131I, 103Ru, 95Zr와 같은 핵종들의 공침 거동에 영향을 끼치지 못하였다. α-Benzoinoxime에 의한 99Mo의 침전 공정은 회분식 조건에서 침전된 침전물을 0.4 N NaOH 용액에서 20 min간 용해하는 공정이 가장 적당하였다. 이 조건에서의 99Mo의 회수율은 97.1%, 기타 핵종들의 제염 계수는 131I은 4.8, 103Ru은 45.5, 95Zr는 27.8이었으며, 다른 핵종들은 100% 제거되었다.
Separation efficiency of molybdenum-99 and removal of the other nuclides were investigated according to adding methods of α-benzoinoxime and the dissolution methods of precipitate. The simulated radioactive solution consisted of 1 M nitric acid containing eight elements (Mo, I, Ru, Zr, Ce, Cr, Nd, Sr) and their corresponding radioactive tracers. It was found that molybdenum-99 precipitated 100%, and separated the most regardless of adding methods used. The physical method of varying an adding method of α-benzoinoxime did not affect the precipitation behavior of molybdenum-99 and the other nuclides: iodine-131, ruthenium-103, and zirconium-95. The optimum condition of the molybdenum-99 precipitation process was the precipitation formed by the batch type addition of α-benzoinoxime that was dissolved in 20 min in 0.4 M sodium hydroxide. At this condition, the yield of molybdenum-99 was 97.1%, and the decontamination factor of iodine-131, ruthenium-103, and zirconium-95 was 4.8, 45.5, and 27.8, respectively. The other nuclides were also mostly removed.
- Langton MA, Trans. Am. Nucl. Soc., 72, 134 (1995)
- Cheng WL, Lee CS, Chen CC, Ting G, Radiochim. Acta, 47, 69 (1989)
- Iturbe JL, Appl. Radiat. Isot., 41(7), 693 (1990)
- IAEA, Fission Molybdenum for Medical Use, IAEA-TECDOC-515 (1989)
- Bourges J, Madic C, Koehly G, Nguyen TH, Baltes D, Landesman C, Nucl. Tech., 113, 204 (1996)
- Sameh AA, Hans JA, Radiochim. Acta, 41, 65 (1987)
- Ejaz E, Mamoon AM, Qureshi MA, Appl. Radiat. Isot., 39(1), 71 (1988)
- Wei T, Cheng WL, Ting G, Solv. Extr. Ion Exch., 2(3), 435 (1984)
- Sivaramakrihan CK, Jadhay AV, Raghuraman K, Raman S, Nair PS, Ramaniah MV, Preparation of High Purity Fission Produced Molybdeum-99, Rep. BARC-847 (1976)
- U.S. Patent, 3,940,318 (1973)
- Cheng WL, Lee CS, Chen CC, Wang YM, Ting G, Appl. Radiat. Isot., 40(4), 315 (1989)
- Hwang DS, Choung WM, Kim YK, Lee KI, Park JH, Park KB, Park SJ, J. Korean Ind. Eng. Chem., 11(6), 632 (2000)
- Scadden EM, Ballou NE, The Radiochemistry of Molybdenum, 6, Subcommittee on Radiochemistry National Academy of Sciences-National Research Council, Washington D.C. (1960)
- Hwang DS, Choung WM, Kim YK, Lee KI, Park JH, J. Korean Ind. Eng. Chem., 11(3), 266 (2000)