HWAHAK KONGHAK, Vol.35, No.1, 69-76, February, 1997
CFC-12/HFC-32 혼합기체의 활성탄소섬유에 대한 흡착평형
Adsorption Equilibrium of CFC-12/HFC-32 Mixture on Activated Carbon Fiber
초록
셀룰로우즈계 활성탄소섬유를 이용하여 CFC-12, HFC-32 순수기체 및 CFC-12/HFC-32 혼합기체에 대한 282-323 K의 온도 범위와 0-1 atm의 압력 범위에서의 흡착평형실험을 행하였다. CFC-12와 HFC-32의 순수 및 혼합물의 흡착평형은 본 연구에서 사용된 활성탄소섬유에 대해 CFC-12가 HFC-32보다 높은 선택성을 나타내었다. CFC-12와 HFC-32 순수기체의 흡착평형의 경우 Langmuir-Freundlich 모델이 Langmuir 모델에 비해 정확한 예측치를 보였다. 혼합물 예측의 경우 IAS와 IH-SPD-NAS 모델이 있어 Extended Langmuir-Freundlich 모델보다 훨씬 잘 예측하였다. IH-SPD-NAS 모델을 사용한 혼합물의 흡착평형 분석에 있어 CFC-12는 Raoult의 법칙으로부터 약간 양의 이탈을 보였으며, HFC-32의 경우 희석농도의 영역에서 (YCFC → 1.0) 상대적으로 큰 양의 이탈을 보였다. 그러나 흡착상에서 비이상성의 영향은 본 계의 경우 그 영향이 중요하지 않았다.
Adsorption isotherms for CFC-12 and HFC-32 at 0-1atm, and binary adsorption equilibria of these mixture at 100mmHg were measured on an activated carbon fiber(ACF) at 283-323 K. In this experimental rage, ACF showed better selectivity for CFC-12 in the pure and binary experiments. For pure gas adsorption isotherms, the Langmuir-Freundlich model showed better predictions than the Langmuir model did. In the case of the binary adsorption equilibria, the IAS and IH-SPD-NAS models predicted the isotherms much better than the Extended Langmuir-Freundlich did. The analysis of the IH-SPD-NAS model indicated that the small positive deviations from Raoult’s law were generally exhibited in CFC-12, while the moderate positive deviations from Raoult’s law occurred in the dilute region of HFC-32(YCFC→1.0). However, the nonideality in the adsorbed phase can be negligible under these experimental conditions.
- Abrams DS, Prausnitz JM, AIChE J., 21, 116 (1975)
- Breck DW, "Zeolite Molecular Sieves," John Wiley & Sons, New York (1974)
- Chen YD, Ritter JA, Yang RT, AIChE J., 45, 2877 (1990)
- Cochran TW, Kabcl RL, Danner RP, AIChE J., 31, 268 (1985)
- Costa E, Sotelo JL, Calleja G, Marron C, AIChE J., 27, 5 (1981)
- Golden TC, Sircar S, AIChE J., 40(6), 935 (1994)
- Hoory SE, Prausnitz JM, Chem. Eng. Sci., 22, 1025 (1967)
- Hori H, Tanaka I, Akiyama T, J. Chem. Soc., 9, 1241 (1986)
- IMSL MATH/LIBRARY, FORTRAN subroutine for mathematical applications ver. 1.1 User's Manual, IMSL Inc. (1989)
- Kodama KS, Kaguei S, Wakao N, Can. J. Chem. Eng., 70, 244 (1992)
- Kumar R, Can. J. Chem. Eng., 60, 577 (1982)
- Loughlin KF, Hasanain MA, Abdul-Rehman HB, Ind. Eng. Chem. Res., 29, 1535 (1990)
- Mahle JJ, Buettner LC, Friday DK, Ind. Eng. Chem. Res., 33(2), 346 (1994)
- Miller GW, Knaebel KS, Ikels KG, AIChE J., 33, 194 (1987)
- Molina MJ, Rowland FS, Nature, 249, 810 (1974)
- Myers AL, "Adsorption of Pure Gases and Their Mixture on Heterogeneous Surfaces," Fundamentals of Adsorption (Myers, A.L. and Belfort, G. Ed.), Eng. Foundation, New York, 365 (1984)
- Myers AL, AIChE J., 29, 691 (1983)
- Myers AL, "Theories of Adsorption in Micropores," Proc. Nato ASI: Adsorption Science and Technology, Portugal (1988)
- Myers AL, Prausnitz JM, AIChE J., 11, 121 (1965)
- Ross S, Olivier JP, "On Physical Adsorption," Interscience, New York (1964)
- Ruthven DM, "Principles of Adsorption & Adsorption Processes," John Wiley & Sons, New York (1984)
- Sloan ED, Mullins JC, Ind. Eng. Chem. Fundam., 14, 347 (1975)
- Suwanayuen S, Danner RP, AIChE J., 31, 2075 (1980)
- Talu O, Myers AL, AIChE J., 34, 1887 (1988)
- Talu O, Zwiebel I, AIChE J., 32, 1263 (1986)
- Talu O, Li J, Myers AL, Adsorption, 1, 103 (1995)
- Valenzuela DP, Myers AL, AIChE J., 34(3), 397 (1988)
- Wilson GM, J. Am. Chem. Soc., 86, 127 (1964)
- Yang RT, "Gas Separation by Adsorption Processes," Butterworths, Boston (1987)
- Park JH, Jun JH, Hwang KS, Lee WK, HWAHAK KONGHAK, 33(3), 301 (1995)
- Ahn BS, Lee SC, Park KY, Chem. Ind. Technol., 12(3), 255 (1994)
- 이한주, "기체분리를 위한 흡착공정," 지구문화사 (1993)
- Lim JG, Chang WC, Lee TJ, Shim JJ, Choi DK, Lee YY, HWAHAK KONGHAK, 32(3), 341 (1994)