Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.5, 586-591, August, 2003
오존처리된 탄소섬유가 탄소섬유 강화 복합재료의 GIIC에 미치는 영향
Influence of Ozone Treatment of Carbon Fibers on GIIC of Carbon Fiber-reinforced Composites
E-mail:
초록
본 실험에서는 오존처리된 탄소섬유가 복합재료의 기계적 계면 물성에 미치는 영향에 대하여 고찰하였다. 탄소섬유의 표면성질은 산염기도, FT-IR, XPS, 그리고 접촉각 측정을 통하여 알아보았으며, 복합재료의 기계적 계면특성은 층간파괴인성특성(critical strain energy release rate mode II; GIIC)을 통하여 고찰하였다. 실험결과, 탄소섬유를 오존처리함에 따라 탄소섬유 표면의 산도와 O1s/C1s비율이 증가하였는데, 이는 탄소섬유 표면의 산소관능기 발달에 기인하며, 표면자유에너지의 증가는 극성요소의 증가에 기인하는 것으로 판단된다. 기계적 계면성질인 GIIC 값은 탄소섬유의 오존처리로 향상되어졌는데, 이는 탄소섬유 표면 젖음성 향상에 따른 최종 복합재료의 섬유와 매트릭스 사이의 계면결합력이 증가하였기 때문이라 판단된다.
In this work, the influence of ozone treatment on mechanical interfacial properties of carbon fibers-reinforced composites was investigated. The surface characteristics of carbon fibers by ozone treatment were studied in acid-base values, XPS, FT-IR, and contact angle measurements. Mechanical interfacial properties of the composites were investigated in terms of critical strain energy release rate mode II (GIIC). The O1s/C1s ratio of the carbon fiber surfaces treated by ozone increased compared to that of untreated ones, possibly due to development of oxygen-containing functional groups. Consequently, the ozone treatment led to an increase of specific components of surface free energy of carbon fibers, resulting in improving the GIIC of the composites. This result was probably due to the increase of interfacial adhesion between the fibers and the matrix, which could be attributed to the good wettability of carbon fiber surfaces.
- Smith WS, Engineered Materials Handbook vol. 1, ASM International, Ohio (1987)
- Donnet JB, Bansal RC, Carbon Fibers, 2nd ed., Marcel Dekker, New York (1990)
- Schwartz MM, Composite Materials Handbook, 2nd ed., McGraw-Hill, New York (1992)
- Fitzer E, Carbon Fibers and Their Composites, Springer-Verlag, Berlin (1985)
- Park SJ, Donnet JB, J. Colloid Interface Sci., 206(1), 29 (1998)
- Park SJ, Kim MH, Lee JR, Choi S, J. Colloid Interface Sci., 228(2), 287 (2000)
- Park SJ, Interfacial Forces and Fields: Theory and Applications, ed. by J.P. Hsu, Chap. 9, Marcel Dekker, New York (1999)
- Weitzsacker L, Ming X, Drzal LT, Surf. Interface Anal., 25, 53 (1997)
- Ibarra L, Macias A, Palma E, J. Appl. Polym. Sci., 61(13), 2447 (1996)
- Park SJ, Kim MH, J. Mater. Sci., 35, 1 (2002)
- Pittman CU, He GR, Wu B, Gardner SD, Carbon, 35, 317 (1997)
- Yue ZR, Jiang W, Wang L, Gardner SD, Pittman CU, Carbon, 37, 1785 (1999)
- Paredes JI, Alonso AM, Tascon JMD, Carbon, 40, 1101 (2002)
- Park SJ, Cho MS, Lee JR, J. Colloid Interface Sci., 226(1), 60 (2000)
- Boehm HP, Adv. Catal., 16, 179 (1966)
- Park SJ, Kim JS, J. Colloid Interface Sci., 244(2), 336 (2001)
- Li X, Horita K, Carbon, 38, 133 (2000)
- Takada T, Nakahara M, Kumagai H, Sanada Y, Carbon, 34, 1087 (1996)
- vanOss CJ, Interface Forces in Aqueous Media, Marcel Dekker, New York (1994)
- Chwastiak S, J. Colloid Interface Sci., 42, 298 (1973)
- Dunn ML, Suwito W, Cunningham S, May CW, Intern. J. Fracture, 84, 367 (1997)
- Griffith AA, Phil. Trans. R. Soc., 221, 163 (1920)
- Compston P, Jar PYB, Burchill PJ, Takahasi K, Compos. Sci. Technol., 61, 321 (2001)
- Russel AJ, Street KN, Factors Affecting the Inter-laminar Fracture Energy of Grpahitr/epoxy Laminates in: Proceedings of the 4th International Conference on Composite Materials (ICCM-IV), Tokyo (1982)