Journal of Industrial and Engineering Chemistry, Vol.15, No.4, 537-543, July, 2009
Selective hydrogenation of maleic anhydride to γ-butyrolactone and tetrahydrofuran by Cu-Zn-Zr catalyst in the presence of ethanol
E-mail:
A series of Cu-Zn-Zr catalysts were prepared by a coprecipitation method and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, temperature programmed reduction, and N2 adsorption. The catalytic activity of the Cu-Zn-Zr catalyst in the hydrogenation of maleic anhydride using ethanol as a solvent was studied at 220-280 ℃ and 1 MPa. Maleic anhydride was mainly hydrogenated to γ-butyrolactone and tetrahydrofuran while ethanol dehydrogenated to ethyl acetate. After reduction, CuO species present in the calcined Cu-Zn-Zr catalysts were converted to metallic copper (Cu°). The presence of ZrO2 favored the deep hydrogenation of γ-butyrolactone to tetrahydrofuranwhile the presence of ZnO was beneficial to the formation of the intermediate product γ-butyrolactone. The molar ratios of the hydrogen produced in ethanol dehydrogenation to the hydrogen consumed in maleic anhydride hydrogenation increased with the increase of the reaction temperature.
- Hara Y, Takahashib K, Catal. Surv. Jpn., 6, 73 (2002)
- Jung SM, Godard E, Jung SY, Park KC, Choi JU, J. Mol. Catal. A-Chem., 198(1-2), 297 (2003)
- Yoo SH, Jho JY, Won J, Park HC, Kang YS, J. Ind. Eng. Chem., 6(2), 129 (2000)
- Kanetaka K, Asano T, Masamune S, Ind. Eng. Chem., 62, 24 (1970)
- Yoon S, Son J, Lee W, Lee HY, Lee CW, J. Ind. Eng. Chem., 15(3), 370 (2009)
- Pallassana V, Neurock M, Coulston G, Catal. Today, 50(3-4), 589 (1999)
- Muller SP, Kucher M, Ohlinger C, Kraushaar-Czarnetzki B, J. Catal., 218(2), 419 (2003)
- Chung DW, Kim TG, J. Ind. Eng. Chem., 13(6), 979 (2007)
- Lim YM, Kang PH, Lee YM, Nho YC, J. Ind. Eng. Chem., 10(2), 267 (2004)
- Pillai UR, Sahle-Demessie EA, Young D, Appl. Catal. B: Environ., 43(2), 131 (2003)
- Kuksal A, Klemm E, Emig G, Appl. Catal. A: Gen., 228(1-2), 237 (2002)
- Girol SG, Strunskus T, Muhler M, Woll C, J. Phys. Chem. B, 108(36), 13736 (2004)
- Hu TJ, Yin HB, Zhang RC, Wu HX, Jiang TS, Wada Y, Catal. Commun., 8, 193 (2007)
- Herrmann U, Emig G, Ind. Eng. Chem. Res., 36(8), 2885 (1997)
- Jung SM, Godard E, Jung SY, Park KC, Choi JU, Catal. Today, 87(1-4), 171 (2003)
- Liu P, Yan K, Liu Y, Yin Y, J. Nat. Gas Chem., 8, 157 (1999)
- Hara Y, Kusaka H, Inagaki H, Takahashi K, Wada K, J. Catal., 194(2), 188 (2000)
- Herrmann U, Emig G, Ind. Eng. Chem. Res., 37(3), 759 (1998)
- Zhang DZ, Yin HB, Zhang RC, Xue JJ, Jiang TS, Catal. Lett., 122(1-2), 176 (2008)
- Zhang RC, Yin HB, Zhang DZ, Qi L, Lu HH, Shen YT, Jiang TS, Chem. Eng. J., 140, 488 (2008)
- Suh YW, Moon SH, Rhee HK, Catal. Today, 63(2-4), 447 (2000)
- Jung KD, Bell AT, J. Catal., 193(2), 207 (2000)
- Castiglioni GL, Fumagalli C, Armbruster E, Messori M, Vaccari A, in: Herkes FE (Ed.), Catalysis of Organic Reactions, Dekker, New York, 1998, p. 391
- Lancia R, Vaccari A, Fumagalli C, Armbruster E, Process for the production of gamma-butyrolactone, WO Patent 9522539 (1995)
- Elliott DJ, Pennella F, J. Catal., 119, 359 (1989)
- Inui K, Kurabayashi T, Sato S, Ichikawa N, J. Mol. Catal. A-Chem., 216(1), 147 (2004)
- Figueiredo RT, Martinez-Arias A, Granados ML, Fierro JLG, J. Catal., 178(1), 146 (1998)
- Aravinda CL, Bera P, Jayaram V, Sharma AK, Mayanna SM, Mater. Res. Bull., 37(3), 397 (2002)
- Moretti G, J. Electron Spectrosc. Relat. Phenom., 76, 365 (1995)
- Poulston S, Parlett PM, Stone P, Bowker M, Surf. Interface. Anal., 24, 811 (1996)
- Velu S, Suzuki K, Gopinath CS, Yoshida H, Hattori T, Phys. Chem. Chem. Phys., 4, 1990 (2002)