화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.15, No.4, 537-543, July, 2009
Selective hydrogenation of maleic anhydride to γ-butyrolactone and tetrahydrofuran by Cu-Zn-Zr catalyst in the presence of ethanol
E-mail:
A series of Cu-Zn-Zr catalysts were prepared by a coprecipitation method and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, temperature programmed reduction, and N2 adsorption. The catalytic activity of the Cu-Zn-Zr catalyst in the hydrogenation of maleic anhydride using ethanol as a solvent was studied at 220-280 ℃ and 1 MPa. Maleic anhydride was mainly hydrogenated to γ-butyrolactone and tetrahydrofuran while ethanol dehydrogenated to ethyl acetate. After reduction, CuO species present in the calcined Cu-Zn-Zr catalysts were converted to metallic copper (Cu°). The presence of ZrO2 favored the deep hydrogenation of γ-butyrolactone to tetrahydrofuranwhile the presence of ZnO was beneficial to the formation of the intermediate product γ-butyrolactone. The molar ratios of the hydrogen produced in ethanol dehydrogenation to the hydrogen consumed in maleic anhydride hydrogenation increased with the increase of the reaction temperature.
  1. Hara Y, Takahashib K, Catal. Surv. Jpn., 6, 73 (2002)
  2. Jung SM, Godard E, Jung SY, Park KC, Choi JU, J. Mol. Catal. A-Chem., 198(1-2), 297 (2003)
  3. Yoo SH, Jho JY, Won J, Park HC, Kang YS, J. Ind. Eng. Chem., 6(2), 129 (2000)
  4. Kanetaka K, Asano T, Masamune S, Ind. Eng. Chem., 62, 24 (1970)
  5. Yoon S, Son J, Lee W, Lee HY, Lee CW, J. Ind. Eng. Chem., 15(3), 370 (2009)
  6. Pallassana V, Neurock M, Coulston G, Catal. Today, 50(3-4), 589 (1999)
  7. Muller SP, Kucher M, Ohlinger C, Kraushaar-Czarnetzki B, J. Catal., 218(2), 419 (2003)
  8. Chung DW, Kim TG, J. Ind. Eng. Chem., 13(6), 979 (2007)
  9. Lim YM, Kang PH, Lee YM, Nho YC, J. Ind. Eng. Chem., 10(2), 267 (2004)
  10. Pillai UR, Sahle-Demessie EA, Young D, Appl. Catal. B: Environ., 43(2), 131 (2003)
  11. Kuksal A, Klemm E, Emig G, Appl. Catal. A: Gen., 228(1-2), 237 (2002)
  12. Girol SG, Strunskus T, Muhler M, Woll C, J. Phys. Chem. B, 108(36), 13736 (2004)
  13. Hu TJ, Yin HB, Zhang RC, Wu HX, Jiang TS, Wada Y, Catal. Commun., 8, 193 (2007)
  14. Herrmann U, Emig G, Ind. Eng. Chem. Res., 36(8), 2885 (1997)
  15. Jung SM, Godard E, Jung SY, Park KC, Choi JU, Catal. Today, 87(1-4), 171 (2003)
  16. Liu P, Yan K, Liu Y, Yin Y, J. Nat. Gas Chem., 8, 157 (1999)
  17. Hara Y, Kusaka H, Inagaki H, Takahashi K, Wada K, J. Catal., 194(2), 188 (2000)
  18. Herrmann U, Emig G, Ind. Eng. Chem. Res., 37(3), 759 (1998)
  19. Zhang DZ, Yin HB, Zhang RC, Xue JJ, Jiang TS, Catal. Lett., 122(1-2), 176 (2008)
  20. Zhang RC, Yin HB, Zhang DZ, Qi L, Lu HH, Shen YT, Jiang TS, Chem. Eng. J., 140, 488 (2008)
  21. Suh YW, Moon SH, Rhee HK, Catal. Today, 63(2-4), 447 (2000)
  22. Jung KD, Bell AT, J. Catal., 193(2), 207 (2000)
  23. Castiglioni GL, Fumagalli C, Armbruster E, Messori M, Vaccari A, in: Herkes FE (Ed.), Catalysis of Organic Reactions, Dekker, New York, 1998, p. 391
  24. Lancia R, Vaccari A, Fumagalli C, Armbruster E, Process for the production of gamma-butyrolactone, WO Patent 9522539 (1995)
  25. Elliott DJ, Pennella F, J. Catal., 119, 359 (1989)
  26. Inui K, Kurabayashi T, Sato S, Ichikawa N, J. Mol. Catal. A-Chem., 216(1), 147 (2004)
  27. Figueiredo RT, Martinez-Arias A, Granados ML, Fierro JLG, J. Catal., 178(1), 146 (1998)
  28. Aravinda CL, Bera P, Jayaram V, Sharma AK, Mayanna SM, Mater. Res. Bull., 37(3), 397 (2002)
  29. Moretti G, J. Electron Spectrosc. Relat. Phenom., 76, 365 (1995)
  30. Poulston S, Parlett PM, Stone P, Bowker M, Surf. Interface. Anal., 24, 811 (1996)
  31. Velu S, Suzuki K, Gopinath CS, Yoshida H, Hattori T, Phys. Chem. Chem. Phys., 4, 1990 (2002)