화학공학소재연구정보센터
Polymer(Korea), Vol.34, No.3, 226-236, May, 2010
다관능성 단량체를 함유한 아크릴계 점착제의 화학적 구조에 따른 점착물성의 변화
The Effect of Chemical Structure on the Adhesion Properties of Acrylic Pressure Sensitive Adhesives Prepared by Multifunctional Monomers
E-mail:
초록
UV조사에 의한 공중합반응을 통해 PDP의 방열패드용 무용제형 아크릴계 점착제를 제조하고 이때 도입되는 공단량체의 곁사슬의 화학적 구조와 가교제의 종류에 따른 점착제의 젖음성을 온도별로 조사하였다. 또한, 동일 조건에서 점착제의 초기 접착력 및 박리강도와 주파수 변화에 따른 점착제의 점탄성 거동 간의 상관관계를 확인하였다. 공단량체의 곁사슬의 길이가 짧을수록 넓은 온도범위에서 우수한 젖음성과 점착 물성을 보였으며 경화제로는 di(ethylene glycol) dimethylacrylate(DEGDMA)를 사용한 계가 우수한 박리 에너지를 보였는데, 이것은 유리전이온도와 점탄성거동의 차이에 기인하는 것으로 판단된다.
UV irradiated acrylic pressure sensitive adhesives(PSAs) are prepared to be used for thermal pad in plasma display panel(PDP). The effect of the chemical structure of side-chain in comonomer and of crosslinking agent on wet-out property of acrylic PSAs in wide temperature range were investigated. The correlationship between viscoelastic behavior and adhesion properties, such as tack and peel strength, was also studied. The experimental results supported that wet-out and adhesion properties of acrylic PSAs were enhanced inversely proportional to side-chain length of comonomer in wide temperature range. The peel energy clearly increased in acrylic PSAs prepared by using di(ethylene glycol) dimethylacrylate (DEGDMA) for crosslinking agent. The results might be due to the difference in the glass transition temperature and viscoelastic behavior of acrylic PSAs.
  1. Satas D, Handbook of Pressure Sensitive Adhesives Technology, 2nd edition, Van Norstrand Reinhold, New York (1989)
  2. Benedek I, Pressure-Sensitive Adhesives and Applications, 2nd edition, Marcel Dekker, New York (2004)
  3. Seo YO, Seul SD, J. Korean Ind. Eng. Chem., 11(3), 335 (2000)
  4. Pizzi A, Mittal KL, Adhesive Technology and Application, Marcel Dekker, New York (2003)
  5. Kinloch AJ, Adhesion and Adhesives: Science and Technology, Chapman and Hall, London (1986)
  6. Czech Z, J. Appl. Polym. Sci., 81(13), 3212 (2001)
  7. Pocius AV, Adhesion and Adhesives Technology, Carl Hanser Verlag, Munich (2002)
  8. Park HS, Polym.(Korea), 16(6), 693 (1992)
  9. Bae JS, Park EK, Park HS, Pyoun MS, Polym.(Korea), 17(2), 203 (1993)
  10. ASTM D 907-05.
  11. Asahara J, Hori N, Takemura A, Ono H, J. Appl. Polym. Sci., 87(9), 1493 (2003)
  12. Czech Z, Int. J. Adhes. Adhes., 24, 503 (2004)
  13. Aymonier A, Ledercq D, Tordjeman P, Papon E, Villenave JJ, J. Appl. Polym. Sci., 89(10), 2749 (2003)
  14. Eveloy V, IEEE Trans. Device Mater. Reliabil., 4, 650 (2004)
  15. Tong JD, Leclere P, Doneux C, Bredas JL, Lazzaroni R, Jerome R, Polymer, 41(12), 4617 (2000)
  16. Fox TG, Bull. Am. Phys. Soc., 1, 123 (1956)
  17. Tordjeman P, Papon E, Villenave JJ, J. Polym. Sci. B: Polym. Phys., 38(9), 1201 (2000)
  18. Morel N, Tordjeman P, Duwattez J, Papon E, J. Colloid Interface Sci., 280(2), 374 (2004)
  19. O'Conner AE, Willenbacher N, Int. J. Adhes. Adhes., 24, 334 (2004)
  20. Yang HW, J. Appl. Polym. Sci., 55(4), 645 (1995)