화학공학소재연구정보센터
Polymer(Korea), Vol.38, No.2, 225-231, March, 2014
미세구조 해석을 통한 고농축 복합화약 시뮬란트의 유변물성 예측
Estimation of Rheological Properties of Highly Concentrated Polymer Bonded Explosive Simulant by Microstructure Analysis
E-mail:
초록
고분자 결합제로 vinyl acetate(VA) 함량이 각각 30, 60%인 poly(ethylene-co-vinyl acetate)(EVA)를 사용하여 고농축 복합화약 시뮬란트의 유변학적 특성을 연구하였다. 충전제로는 탄산칼슘 및 research department explosive (RDX)와 물리적 특성이 유사한 Dechlorane을 사용하였다. 회분식 용융 혼련기를 사용하여 농축 현탁계를 혼련하였는데 최대 75 v%까지 충전이 가능하였다. 동적 기계적 물성 변화를 측정한 결과 Dechlorane이 탄산칼슘보다 결합제 수지와 더 높은 상호작용을 보였다. 일정 전단속도 방식과 일정 전단응력 방식의 평판-평판 레오미터를 사용하여 현탁계의 미세구조의 변화가 유변물성에 미치는 영향을 조사하였고, Krieger-Dougherty 식을 사용하여 최대 충전 부피분율 및 고유점도를 구하였다. EVA31/Dechlorane 현탁계의 최대 충전 부피분율은 약 70 v%이고, 혼련시 전단응력이 약 2000 Pa 정도 부가되는 것이 적절함을 알 수 있었다.
The rheological properties of highly concentrated polymer bonded explosive simulant were studied by using poly(ethylene-co-vinyl acetate) with 30 and 60% vinyl acetate (VA) content as a binder, respectively. Calcium carbonate and Dechlorane, whose physical properties are similar to resarch department explosive (RDX)’s, were used as fillers. The suspensions were mixed in a batch melt mixer and it was possible to fill 75 v% at maximum. From dynamic mechanical analysis, Dechlorane showed higher interaction with binder resins than that with calcium carbonate fillers. The effects of microstructural change on the rheological properties of the suspensions were investigated by a plate-plate rheometer with constant shear rate and constant shear stress modes, respectively. The theoretical maximum packing fraction of EVA31/ Dechlorane suspension obtained from Krieger-Dougherty equation was 70 v% and it was thought that 2000 Pa was proper shear stress condition for this melt processing.
  1. Sun L, Park M, Salovey R, Aklonis JJ, Polym. Eng. Sci., 32, 777 (1992)
  2. Wang Y, Wang JJ, Polym. Eng. Sci., 39(1), 190 (1999)
  3. Kim KJ, White JL, Polym. Eng. Sci., 39(11), 2189 (1999)
  4. Suetsugu Y, White JL, J. Appl. Polym. Sci., 28, 1481 (1983)
  5. Wang Y, Yu MJ, Polym. Compos., 21, 111 (2000)
  6. Le Meins JF, Moldenaers P, Mewis J, Ind. Eng. Chem. Res., 41(25), 6297 (2002)
  7. Poslinski AJ, Ryan ME, Gupta RK, Seshadri SG, Frechette FJ, J. Rheol., 32, 703 (1988)
  8. Ottani S, Valenza A, La Mantia FP, Rheol. Acta, 27, 172 (1988)
  9. Krieger IM, Adv. Colloid Interface Sci., 3, 111 (1972)
  10. Einstein A, Ann. Phys. (Leipzig), 19, 289 (1906)
  11. Einstein A, Ann. Phys. (Leipzig), 34, 591 (1911)
  12. Larson RG, The Structure and Rheology of Complex Fluids, Oxford University Press, New York (1999)
  13. Barnes HA, Hutton JF, Walters K, An Introduction to Rheology, Elsevier, Amsterdam (1989)
  14. Krieger IM, Dougherty TJ, Trans. Soc. Rheol., 3, 137 (1959)
  15. Choi GN, Krieger IM, J. Colloid Interface Sci., 113, 101 (1986)
  16. Hunter RJ, Foundations of Colloid Science, Oxford University Press, Oxford (2001)
  17. Nielsen LE, Polymer Rheology, Marcel Dekker, New York (1977)
  18. Hinch EJ, Leal LG, J. Fluid Mech., 52, 683 (1972)
  19. Nielsen LE, J. Polym. Sci., Part A: Polym. Chem., 17, 1897 (1979)
  20. Lewis TB, Nielsen LE, Trans. Soc. Rheol., 12, 421 (1968)
  21. Bomal Y, Godard P, Polym. Eng. Sci., 36(2), 237 (1996)
  22. Inn YW, Wang SQ, Langmuir, 11(5), 1589 (1995)
  23. Stamhuis JE, Polym. Compos., 9, 72 (1988)
  24. Pasanovic-Zujo V, Gupta RK, Bhattacharya SN, Rheol. Acta, 43(2), 99 (2004)
  25. Jang K, Lee JW, Hong IK, Lee S, Korea-Aust. Rheol. J., 25(3), 145 (2013)
  26. Perera MCS, Ishiaku US, Ishak ZAM, Polym. Degrad. Stabil., 68, 393 (2000)
  27. Osman MA, Atallah A, Schweizer T, Ottinger HC, J. Rheol., 48(5), 1167 (2004)