화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.21, 749-753, January, 2015
The modeling of hydrate growth kinetics in tetrahydrofuran-water mixture based on subcooling driving force
E-mail:
The objective of this work is the investigation of tetrahydrofuran hydrate formation under atmospheric pressure in a static reactor without stirring. The growth rate of hydrate is mostly controlled by the conduction heat transfer phenomenon. An approximate method based on the improved quasi solution was utilized to estimate the interface position of THF hydrate layer around a planar probe. In said method, the polynomial (order 2) and exponential assumptions were introduced as temperature profile for solid and liquid phases in finite regions. A proper agreement was found between the results of mentioned solution and experimental data with average deviation about 3.5%. Also the parametric curves were presented to describe the effect of operating parameters on the interface motion between hydrate and liquid phases. The hydrate formation based on subcooling driving force is very effective to solve the separation difficulty between hydrate crystals and solution in water desalination procedure.
  1. Sloan ED, Koh CA, Clathrate Hydrates of Natural Gases, third ed., CRC Press, Taylor & Francis Group, Boca Raton, 2008.
  2. Ballard AL, Sloan ED, Chem. Eng. Sci., 56(24), 6883 (2001)
  3. Kwona YA, Park JM, Jeong KE, Kim CU, Kim TW, Chae HJ, Jeong SY, Yim JH, Park YK, Lee J, J. Ind. Eng. Chem., 17(1), 120 (2011)
  4. Sabil KM, Witkamp GJ, Peters CJ, Fluid Phase Equilib., 284(1), 38 (2009)
  5. Wilson PW, Haymet ADJ, Chem. Eng. J., 161(1-2), 146 (2010)
  6. Liu Y, Song Y, Chen Y, Yao L, Li Q, J. Nat. Gas Chem., 19, 224 (2010)
  7. Nagashima K, Yamamoto Y, Takahashi M, Komai T, Fluid Phase Equilib., 214(1), 11 (2003)
  8. Iida T, Mori H, Mochizuki T, Mori YH, Chem. Eng. Sci., 56(16), 4747 (2001)
  9. Karamoddin M, Varaminian F, J. Ind. Eng. Chem., http://dx.doi.org/10.1016/j.jiec.2013.12.084 (in press) (2014)
  10. Devarakond S, Groysman A, Myerson AS, J. Cryst. Growth, 204, 525 (1998)
  11. Conrad V, Tetrahydrofuran Clathrate Hydrate Formation Studied by X-ray Raman Scattering, 2009.
  12. Mandri Y, Rich A, Mangin D, Abderafi S, Bebon C, Semlali N, Klein JP, Bounahmidi T, Bouhaouss A, Desalination, 269(1-3), 142 (2011)
  13. Rich A, Mandri Y, Mangin D, Rivoire A, Abderafi S, Bebon C, Semlali N, Klein JP, Bounahmidi T, Bouhaouss A, Veesler S, J. Cryst. Growth, 342(1), 110 (2012)
  14. Williams PM, Ahmad M, Connolly BS, Desalination, 308, 219 (2013)
  15. Akyurt M, Zaki G, Habeebullah B, Energy Conv. Manag., 43(14), 1773 (2002)
  16. Salcudean M, Abdullah Z, Int. J. Numer. Meth. Eng., 25(2), 445 (1988)
  17. Hu H, Argyropoulos SA, Model. Simul. Mater. Sci. Eng., 4(4), 371 (1996)
  18. Samarskii AA, Vabishchevich PN, Iliev OP, Churbanov A, Int. J. Heat Mass Transf., 36(17), 4095 (1993)
  19. Tangthieng C, Appl. Therm. Eng., 31, 701 (2011)
  20. Soltan BK, Ardehali MM, Energy Conv. Manag., 44(1), 85 (2003)
  21. Lu T, Wang KS, J. Petrol. Sci. Eng., 62, 52 (2008)
  22. Qin FGF, Chen XD, Farid MM, Sep. Purif. Technol., 39(1-2), 109 (2004)
  23. Qin FGF, Chen XD, Free K, Int. J. Heat Mass Transf., 52(5-6), 1245 (2009)
  24. Caldwell J, Kwan YY, Commun. Numer. Methods Eng., 20, 535 (2004)
  25. Dutil Y, Rousse DR, Salah NB, Lassue S, Zalewski L, Renew. Sust. Energ. Rev., 15, 112 (2011)
  26. Yari M, Monsef H, Zadegan MN, J. Econ. Eng., 1(1), 10 (2011)
  27. Yigit F, Appl. Math. Comput., 202, 857 (2008)
  28. Muhieddine M, Canot E, March R, Int. J. Finite Volumes, 6 (2009)
  29. Esen A, Kutluay S, Appl. Math. Comput., 145, 321 (2004)
  30. Jiji LM, Heat Conduction, Department of Mechanical Engineering, the City University of New York, USA, 2009.
  31. Caldwell J, Kwan YY, Int. J. Heat Mass Transf., 46(8), 1497 (2003)
  32. Singh J, Gupta PK, Rai KN, Appl. Math. Model., 35, 1937 (2011)
  33. Slota D, Int. Commun. Heat Mass Transf., 37, 587 (2010)
  34. Hetmaniok E, Nowak I, Slota D, Witula R, Int. Commun. Heat Mass Transf., 39, 30 (2012)
  35. Savovic S, Caldwell J, Int. J. Heat Mass Transf., 46(15), 2911 (2003)
  36. Sadoun N, Ahmed EKS, Colinet P, Appl. Math. Model., 30, 531 (2006)
  37. Roday AP, Kazmierczak MJ, Melting, Therm. Sci., 13, 141 (2009)
  38. Krishnayya AVG, Seshadri R, J. Heat Transf. -Trans. ASME, 23, 111 (1980)
  39. Lunardini VJ, J. Energy Resour. Technol.-Trans. ASME, 103, 201 (1981)
  40. Bronfenbrener L, Korin E, Chem. Eng. Process., 38(3), 239 (1999)
  41. Lin S, Zheng J, J. Heat Transf. -Trans. ASME, 125, 1123 (2003)
  42. Jiji LM, Ganatos P, Int. J. Therm. Sci., 48, 547 (2009)
  43. Jiji LM, Ganatos P, Int. J. Heat Mass Transf., 51(23-24), 5679 (2008)
  44. Poling BE, Prausnitz JM, Oconnell JP, The Properties of Gases and Liquids, fifth ed., McGraw Hill Companies, United States of America, 2000.
  45. Park KN, Hong SY, Lee JW, Kang KC, Lee YC, Ha MG, Lee JD, Desalination, 274(1-3), 91 (2011)