화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.26, No.5, 598-603, October, 2015
열처리 온도에 의한 피치계 활성탄소섬유의 기공구조 변화가 전기화학적 특성에 미치는 영향
Influence of Textural Structure by Heat-treatment on Electrochemical Properties of Pitch-based Activated Carbon Fiber
E-mail:
초록
본 연구에서는 전기이중층 커패시터의 비정전용량 향상시키기 위하여 활성탄소섬유의 열처리 온도가 전기화학적 특성에 미치는 영향을 알아보았다. 용융방사한 피치 섬유를 안정화를 거쳐 800 ℃에서 4 M KOH로 활성화하였고, 활성화 섬유를 각각 1050, 1450 ℃의 온도조건에서 열처리하여 서로 다른 특성을 갖는 활성탄소섬유를 제조하였다. 제조된 활성탄소섬유는 열처리 온도가 증가함에 따라 비표면적이 828 m2/g에서 987 m2/g으로 증가하였으며 미세공 및 중간세공의 부피 또한 증가하였다. 이는 열처리 공정이 활성탄소섬유 내부의 산소 및 수소 원소 성분을 탈리시키면서 세공이 생성되고, 활 성탄소섬유를 수축하게 하여 상대적으로 세공의 크기를 증가시켰기 때문이다. 이러한 세공 변화로 인하여 제조된 전극은 1 M 황산수용액을 전해질로 하여 5 mV/s의 전위주사속도로 측정하였을 때, 비정전용량이 73 F/g에서 119 F/g으로 향상되었음을 확인하였다.
In this study, electrochemical properties of pitch-based activated carbon fibers (ACFs) were investigated by different heat-treatment temperature of the pitch-based ACFs in order to improve the specific capacitance of electric double-layer capacitor (EDLC). The ACFs were prepared by different heat-treatment temperatures of 1050 and 1450 ℃, after activation with 4 M KOH at 800 ℃ using stabilized pitch fiber. The specific surface area of prepared ACFs increased from 828 m2/g to 987 m2/g, also the micropore and mesopore volumes of prepared ACFs were increased. These results because pore was produced by desorbing oxygen and hydrogen elements within the ACFs, and pore size was increased by contraction ACFs by heat-treatment process. Because of the porous properties, the specific capacitance was increased from 73 F/g to 119 F/g using cyclic voltammetry with 1 M H2SO4 at scan rates of 5 mV/s.
  1. Frackowiak E, Beguin F, Carbon, 39, 937 (2001)
  2. Xia XH, Shi L, Liu HB, Yang L, He YD, Phys. Chem. Solids, 73, 385 (2012)
  3. Largeot C, Porter C, Chemiola J, Taberna PL, Gogotsi Y, Simon P, J. Am. Chem. Soc., 13, 2730 (2008)
  4. Kodama M, Yamashita J, Soneda Y, Hatori H, Nishimura S, Kamegawa K, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 108, 156 (2004)
  5. Frackowiak E, Phys. Chem. Chem. Phys., 9, 1774 (2007)
  6. Tanimura A, Kovalenko A, Hirata F, Chem. Phys. Lett., 378(5-6), 638 (2003)
  7. Wolfgang H, Erhard K, Fuel, 74, 1789 (1995)
  8. Nasrin RK, Campbell M, Sandi G, Golas J, Carbon, 38, 1905 (2000)
  9. Won SW, Wu GP, Ma H, Liu Q, Yan Y, Cui LZ, Liu C, Yun YS, J. Hazard. Mater., 138(2), 370 (2006)
  10. Lee SG, Park KH, Shim WG, balathanigaimani MS, Moon H, J. Ind. Eng. Chem., 17(3), 450 (2011)
  11. Adinaveen T, Kennedy LJ, Vijaya JJ, Sekaran G, J. Ind. Eng. Chem., 19(5), 1470 (2013)
  12. Diez N, Alvarez P, Santamaria R, Blanco C, Menendez R, Granda M, Fuel Process. Technol., 93(1), 99 (2012)
  13. Kim MI, Lee YS, Appl. Chem. Eng., 25(2), 193 (2014)
  14. Morimoto T, Hiratsuka K, Sanada Y, Kurihara K, J. Power Sources, 60, 239 (1996)
  15. Kim JG, Kang SC, Shin E, Kim DY, Lee JH, Lee YS, Appl. Chem. Eng., 23(1), 47 (2012)
  16. Jung MJ, Jeong E, Kim Y, Lee YS, J. Ind. Eng. Chem., 19(4), 1315 (2013)
  17. Shin S, Jang J, Yoon SH, Mochida I, Carbon, 35, 1739 (1997)
  18. Little TW, Ohuchi FS, Surf. Sci., 445, 235 (2000)
  19. Zhang C, Duan Y, Xing B, Zhan L, Qiao W, Ling L, Mining Sci. Technol., 19, 295 (2009)
  20. Jeong E, Jung MJ, Cho SH, Lee SI, Lee YS, Colloids Surf. A: Physicochem. Eng. Asp., 377, 243 (2011)
  21. Atul S, Takashi K, Akira T, Carbon, 38, 1977 (2000)
  22. Huang Y, Ma E, Zhao G, Ind. Crop. Prod., 69, 447 (2015)
  23. Park MS, Cho S, Jeong E, Lee YS, J. Ind. Eng. Chem., 23, 27 (2015)
  24. Kim JH, Lee D, Bae TS, Lee YS, J. Ind. Eng. Chem., 25, 192 (2015)
  25. Condon JB, Surface Area and Porosity Determinations by Phsisorption: Measurements and theory. 1st ed., 11-18, Elsevier science, Oxford, UK (2006).
  26. Kim JG, Chung CH, Lee YS, Appl. Chem. Eng., 22(2), 138 (2011)
  27. Thomas ER, Hulicova-Jurcakova D, Zhu Z, Lu GQ, Electrochem. Commun., 10, 1594 (2008)
  28. Yang KL, Yiacoumi S, Tsouris C, J. Electroanal. Chem., 540, 159 (2003)
  29. Lee D, Jung JY, Park MS, Lee YS, Carbon lett., 15, 192 (2014)
  30. Gupta V, Miura N, Electrochim. Acta, 52(4), 1721 (2006)
  31. Rarnani M, Haran BS, White RE, Popov BN, J. Electrochem. Soc., 148(4), A374 (2001)