화학공학소재연구정보센터
Polymer(Korea), Vol.40, No.4, 607-613, July, 2016
폴리프로필렌/대나무 섬유 복합체의 물리적 물성에 대한 에틸렌-옥텐 공중합체 및 대나무 섬유 알카리 처리의 영향
Effects of Ethylene-Octene Copolymer and Alkali Treatment of Bamboo Fiber (BF) on the Physical Properties of PP/BF Composites
E-mail:
초록
본 연구에서는 폴리프로필렌(polypropylene, PP)/대나무 섬유(bamboo fiber, BF) 복합체의 물리적 물성에 대한 에틸렌-옥텐 공중합체(ethylene-octene copolymer, EOR)와 BF의 알카리 처리의 영향을 고찰하였다. EOR과 상용화제를 포함하는 PP/BF 복합체를 이축압출기에서 제조하고, 기계적 물성, 형태학적 특성 및 유변학적 특성 등을 고찰하여 최적의 배합비를 결정하였다. BF의 길이는 기계적 물성 그리고 압출물의 탄화와 외관형상 등을 고려할 때 200 μm가 적정한 것으로 평가되었다. PP/BF 복합체의 물리적 물성은 EOR과 PP에 무수말레인산(maleic anhydride, MAH)이 그래프트된 EOR-g-MAH와 PP-g-MAH가 혼합 사용될 때 최적의 물성을 나타내었다. NaOH 수용액으로 BF를 알카리 처리할 때 1737, 1601 그리고 1348 cm-1에서의 피크 감소로부터 리그닌과 헤미-셀룰로오스의 감소를 확인하였으며, 알카리 처리된 PP/BF 복합체의 굴곡강도가 증가하였다. PP/BF 복합체의 계면 접착특성은 인장시험후 파단면의 SEM 사진을 통해 확인하였다.
In this study, the effects of ethylene-octene copolymer (EOR) and alkali treatment of bamboo fiber (BF) on the physical properties of the polypropylene (PP)/BF composite were investigated. PP/BF composites using EOR and the compatibilizer were fabricated with a twin screw extruder. Their physical properties were evaluated and the formulation was optimized. Mechanical properties, thermal degradation, and appearance of extrudate were all good for the fiber length of 200 μm. PP/BF composites had the best physical properties when EOR-g-maleic anhydride (MAH) and PP-g-MAH were used together as a compatibilizer. When alkali treating the BF, it was observed that peaks near 1737, 1601, and 1348 cm-1 decreased, which suggests a reduction in lignin and hemicellulose contents among the BF components and the flexural strength was enhanced. The interface adhesion properties of the PP/BF composites were identified by SEM images of the fractured surface after the tension tests.
  1. Liu D, Song J, Anderson DP, Chang PR, Hua Y, Cellulose, 19, 1449 (2012)
  2. Kellersztein I, Dotan A, Polym. Compos., doi 10.1002/pc.23392 (2015)
  3. Ka SS, Moon KH, Jang CJ, Conference of KSAE, April, 1349 (2009).
  4. Kwak SB, Lee SL, Lee HY, Yun SH, Kim SH, Lee JY, Annual Conference of KSAE, November, 2491 (2011).
  5. Khaili HPSA, Bhat IUH, Jawaid M, Zaidon A, Hermawan D, Hadi YS, Mater. Des., 42, 353 (2012)
  6. Gwon JG, Lee SY, Chun SJ, Doh GH, Kim JH, Compos. Pt. A-Appl. Sci. Manuf., 41, 1491 (2010)
  7. Chattopadhyay SK, Khandal RK, Uppaluri R, Ghoshal AK, J. Appl. Polym. Sci., 119(3), 1619 (2011)
  8. El-Sabbagh A, Compos. Pt. B, 57, 126 (2014)
  9. Zakikhani P, Zahari R, Sultan MTH, Majid DL, Mater. Des., 63, 820 (2014)
  10. Seo YW, Kim DS, Polym. Korea, 38(3), 327 (2014)
  11. Fuentes CA, Brughmans G, Tran LQN, Gillain CD, Verpoest I, Vuure AWV, Compos. Sci. Technol., 109, 40 (2015)
  12. Jang SY, Kim DS, Polym. Korea, 39(1), 130 (2015)
  13. Cai G, Wang J, Nie Y, Tian X, Zhu X, Zhou Z, Polym. Compos., 32, 1945 (2011)
  14. Liu H, Wu Q, Han G, Kojima Y, Suzuki S, Compos. Pt. A-Appl. Sci. Manuf., 39, 1891 (2008)
  15. Nayak SK, Mohanty S, Samal SK, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 523, 32 (2009)
  16. Lee JH, Lee BG, Park KH, Bang DS, Jhee KH, Sin MC, Elast. Compos., 46, 211 (2011)
  17. Paunikallio T, Kasanen J, Suvanto M, Pakkanen TT, J. Appl. Polym. Sci., 87(12), 1895 (2003)
  18. Chen XY, Guo QP, Mi YL, J. Appl. Polym. Sci., 69(10), 1891 (1998)
  19. Lee JW, Ku SG, Lee BH, Lee KW, Kim CW, Kim KS, Kim YC, Appl. Chem. Eng., 26(5), 615 (2015)
  20. Ruksakulpiwat J, Sridee J, Suppakarn N, Sutapun W, Compos. Part B, 40, 619 (2009)
  21. Oksman K, Clemons C, The 4th Inter. Confer. on Woodfiber-Plastic Compos., 144 (1997).
  22. Pigatto C, Junior JHSA, Junior HLO, Rodriguez AL, Mahlmann CM, Amico SC, Polym. Compos., 33, 2262 (2012)
  23. Oh JS, Lee SH, Kim KJ, Polym. Korea, 39(1), 99 (2015)
  24. Yeh SK, Hsieh CC, Chang HC, Yen CCC, Chang YC, Compos. Pt. A-Appl. Sci. Manuf., 68, 313 (2015)
  25. Xu G, Wang L, Liu J, Wu J, Appl. Surf. Sci., 280, 799 (2013)