화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.28, No.3, 339-344, June, 2017
RWGS 반응을 위한 Pt/TiO2 촉매의 조촉매 첨가 영향 연구
Effect of Promotor Addition to Pt/TiO2 Catalyst on Reverse Water Gas Shift Reaction
E-mail:
초록
다양한 조촉매가 첨가된 Pt/TiO2 촉매 및 순수 Pt계 촉매의 RWGS 반응에 대한 특성과 성능에 관한 연구를 수행하였다. 지지체 및 활성금속 종류에 의해 RWGS 반응 성능이 크게 영향 받음을 확인하였고, Pt/TiO2 촉매가 가장 우수한 성능을 보임을 알 수 있었다. CO2 주입 농도별 실험 및 열역학적 평형 전환율 평가를 통해 Pt/TiO2 촉매의 성능을 객관적으로 평가할 수 있었고, 상용촉매 대비 우수한 성능을 보임을 관찰하였다. 조촉매로 첨가한 Ca와 Na는 촉매성능을 증진시킬 수 있었으며, XPS 분석을 통해 표면 활성점의 전자밀도가 성능과 밀접한 관련이 있음을 확인하였다.
Reaction characteristics and catalytic activities on reverse water gas shift (RWGS) reaction over Pt/TiO2 catalyst and Pt based catalysts added promoters were investigated. It was confirmed that RWGS reaction activity was affected by the kind of supports and active metals and the Pt/TiO2 catalyst showed the highest catalytic activity. From various inlet CO2 concentration tests and also the evaluation of thermodynamic equilibrium conversion, the catalytic activity of Pt/TiO2 catalyst could be evaluated objectively and it was found to be higher than that of commercial catalysts. The catalytic activity could increase by adding Ca and Na as promoters. The XPS analysis revealed that the catalytic activity is closely correlated with the electron density of surface active sites.
  1. Kim SS, Lee HH, Hong SC, Appl. Catal. A: Gen., 423-424, 100 (2012)
  2. Kim SS, Lee HH, Hong SC, Appl. Catal. B: Environ., 119-120, 100 (2012)
  3. Kim SS, Park KH, Hong SC, Fuel Process. Technol., 108, 47 (2013)
  4. Sun Y, Yao MS, Zhang JP, Yang G, Chem. Eng. J., 173(2), 437 (2011)
  5. Lee SY, Park SJ, J. Ind. Eng. Chem., 23, 1 (2015)
  6. Lee YC, Lee SM, Hong WG, Huh YS, Park SY, Lee SC, Lee J, Lee JB, Lee HU, Kim HJ, J. Ind. Eng. Chem., 23, 16 (2015)
  7. Han DR, Namkung H, Lee HM, Huh DG, Kim HT, J. Ind. Eng. Chem., 21, 792 (2015)
  8. Kunzler C, Alves N, Pereira E, Nienczewski J, Ligabue R, Einloft S, Dullius J, Energy Procedia, 4, 1010 (2011)
  9. Pakhare D, Spivey J, Chem. Soc. Rev., 43, 7813 (2014)
  10. Mette K, Kuhl S, Dudder H, Kahler K, ChemCatChem, 6, 100 (2014)
  11. Koo KY, Roh HS, Seo YT, Seo DJ, Yoon WL, Bin Park S, Appl. Catal. A: Gen., 340(2), 183 (2008)
  12. Jang WJ, Jeong DW, Shim JO, Kim HM, Roh HS, Son IH, Lee SJ, Appl. Energy, 173, 80 (2016)
  13. Koo KY, Lee SH, Jung UH, Roh HS, Yoon WL, Fuel Process. Technol., 119, 151 (2014)
  14. Chen CS, Cheng WH, Lin SS, Appl. Catal. A: Gen., 257(1), 97 (2004)
  15. Wang L, Zhang S, Liu Y, J. Rare Earths, 26, 66 (2008)
  16. Park SW, Joo OS, Jung KD, Kim H, Han SH, Appl. Catal. A: Gen., 211(1), 81 (2001)
  17. Goguet A, Meunier FC, Tibiletti D, Breen JP, Burch R, J. Phys. Chem. B, 108(52), 20240 (2004)
  18. Chen X, Su X, Liang B, Yang X, Ren X, Duan H, Huang Y, Zhang T, J. Energy Chem., 25, 1051 (2016)
  19. Panagiotopoulou P, Kondarides DI, Appl. Catal. B: Environ., 101(3-4), 738 (2011)
  20. Panagiotopoulou P, Kondarides DI, J. Catal., 267(1), 57 (2009)
  21. Panagiotopoulou P, Kondarides DI, J. Catal., 260(1), 141 (2008)
  22. Karelovic A, Ruiz P, J. Catal., 301, 141 (2013)
  23. Zamani AH, Ali R, Abu Bakar WAW, J. Ind. Eng. Chem., 29, 238 (2015)
  24. Phatak AA, Koryabkina N, Rai S, Ratts JL, Ruettinger W, Farrauto RJ, Blau GE, Delgass WN, Ribeiro FH, Catal. Today, 123(1-4), 224 (2007)
  25. Baumgarten E, Fiebes A, Stumpe A, Ronkel F, Shultze JW, J. Mol. Catal. A-Chem., 113, 469 (1996)