- Previous Article
- Next Article
- Table of Contents
Korean Journal of Chemical Engineering, Vol.36, No.3, 500-504, March, 2019
Performance evaluation of glucose oxidation reaction using biocatalysts adopting different quinone derivatives and their utilization in enzymatic biofuel cells
E-mail:
Glucose oxidase (GOx) and four different quinone derivatives (p-benzoquinone (BQ), naphthoquinone (NQ), anthraquinone (AQ) and 1,5-Dihydroxyanthraquinone (15DHAQ)) based biocomposites were embedded in polyethyleneimine (PEI) and then immobilized on carbon nanotube (CNT) substrate (CNT/PEI/Quinone/GOx). These catalysts were then used as the anodic biocatalysts for the enzymatic biofuel cell (EBC). According to the performance investigations of catalysts, the catalytic activity for glucose oxidation reaction (GOR) representing the electron transfer rate between GOx and glucose fuel is mostly enhanced in CNT/PEI/NQ/GOx. It is because two benzene rings of NQ play a role in attracting and releasing electrons effectively, increasing the catalytic activity for GOR, while other quinones have problems about attracting electrons (AQ and 15DHAQ) and wrong position of the reactive site for electron transfer (BQ). Excellent electron transfer rate constant (1.1 s?1) and Michaelis-Menten constant (0.99mM) are outstanding evidence for that. Furthermore, when the catalyst is utilized for EBC, high power density (57.4 꺷Wcm?2) and high open circuit voltage (0.64 V) are accomplished.
- Hyun KH, Han SW, Koh WG, Kwon Y, J. Power Sources, 286, 197 (2015)
- Minteer SD, Liaw BY, Cooney MJ, Curr. Opin. Biotechnol., 18, 228 (2007)
- Abreu C, Nedellec Y, Ondel O, Buret F, Cosnier S, Le Goff A, Holzinger M, J. Power Sources, 392, 176 (2018)
- Hyun K, Han SW, Koh WG, Kwon Y, Int. J. Hydrog. Energy, 40(5), 2199 (2015)
- Christwardana M, Ji JY, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 2916 (2017)
- Wooten M, Karra S, Zhang M, Gorski W, Anal. Chem., 86, 752 (2013)
- Sulka M, Pitonak M, Neogrady P, Urban M, Int. J. Quantum Chem., 108, 2159 (2008)
- Driver N, Jena P, Int. J. Quantum Chem., 118, e25504 (2018)
- Katsounaros I, Schneider WB, Meier JC, Benedikt U, Biedermann PU, Auer AA, Mayrhofer KJ, Phys. Chem. Chem. Phys., 14, 7384 (2012)
- Bunte C, Hussein L, Urban GA, J. Power Sources, 247, 579 (2014)
- Nazaruk E, Smolinski S, Swatko-Ossor M, Ginalska G, Fiedurek J, Rogalski J, Bilewicz R, J. Power Sources, 183(2), 533 (2008)
- Wang Y, Hasebe Y, J. Electrochem. Soc., 159, 110 (2012)
- Conant JB, Fieser LF, J. Am. Chem. Soc., 46, 1858 (1924)
- Latifatu M, Park JH, Ko JM, Park JW, J. Ind. Eng. Chem., 63, 12 (2018)
- Yuan E, Wu C, Liu G, Li G, Wang L, J. Ind. Eng. Chem., 66, 158 (2018)
- Gorner H, Photochem. Photobiol. Sci., 3, 933 (2004)
- Lee MJ, Chun NH, Kim HC, Kim MJ, Kim P, Cho MY, Choi GJ, Korean J. Chem. Eng., 35(4), 984 (2018)
- Nawar S, Huskinson B, Aziz M, Mater. Res. Soc. Symp. Proc., 1491 (2013)
- Uchimiya M, Stone AT, Chemosphere, 77, 451 (2009)
- Milton DP, Hickey DP, Abdellaoui S , Lim K, Wu F, Tan B, Minteer SD, Chem. Sci., 6, 4867 (2015)
- Ji J, Joh HI, Chung Y, Kwon Y, Nanoscale, 9, 15998 (2017)
- Chung Y, Hyun K, Kwon Y, Nanoscale, 8, 1161 (2016)
- Razzaghi M, Karimi A, Aghdasinia H, Joghataei MT, Korean J. Chem. Eng., 34(11), 2870 (2017)
- Im YO, Lee SH, Yu SU, Lee J, Lee KH, Korean J. Chem. Eng., 34(3), 898 (2017)
- Hwang KS, Park HY, Kim JH, Lee JY, Korean J. Chem. Eng., 35(3), 798 (2018)
- Adewunmi AA, Ismail S, Sultan AS, Ahmad Z, Korean J. Chem. Eng., 34(6), 1638 (2017)
- Ahn Y, Chung Y, Kwon Y, Korean Chem. Eng. Res., 55(2), 258 (2017)
- Kang SH, Yoo KS, Chung YJ, Kwon YC, J. Ind. Eng. Chem., 62, 329 (2018)
- Noh C, Moon S, Chung Y, Kwon Y, J. Mater. Chem. A, 5, 21334 (2017)
- Noh C, Kwon BW, Chung Y, Kwon Y, J. Power Sources, 406, 26 (2018)