화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.82, 278-289, February, 2020
Effect of impurities on ultra-pure hydrogen production by pressure vacuum swing adsorption
E-mail:
The most viable technology for production of ultra-pure hydrogen (>99.99%), required for fuel cells, is steam methane reforming (SMR) coupled with pressure vacuum swing adsorption (PVSA). A PVSA process with a two-layer bed of activated carbon (AC)/zeolite 5A for ultra-pure hydrogen production from syngas was developed and simulated with the aim of exploring the effect of impurities on energy intensity of the process. The simulated concentration profiles showed that CH4 was removed by the first half of the AC layer, CO2 and CO were mostly removed by the end of that layer, but zeolite 5A (the second layer) could not completely remove the remaining N2. Further, the effect of the N2 on performance of the PVSA process was demonstrated by simulating purification of two feeds with 3.1 and 1.1 vol% N2, respectively. The 2% drop in N2 concentration in the syngas feed resulted in decreased energy consumption of the PVSA process from 940 kJ/kg to 430 kJ/kg H2, while H2 recovery increased from 47% to 55%. Therefore, the presence of N2 has a very large impact on recovery and energy intensity of the ultrapure hydrogen production process, and development of adsorbents with better N2 removal performance is required.
  1. Majlan EH, Daud WRW, Iyuke SE, Mohamad AB, Kadhum AAH, Mohammad AW, Takriff MS, Bahaman N, Int. J. Hydrog. Energy, 34(6), 2771 (2009)
  2. Besancon BM, Hasanov V, Imbault-Lastapis R, Benesch R, Barrio M, Molnuik MJ, Int. J. Hydrog. Energy, 34(5), 2350 (2009)
  3. Park SK, Kim TS, Sohn JL, Lee YD, Appl. Energy, 88(4), 1187 (2011)
  4. Scheelhaase JD, J. Air Transp. Manag., 75, 68 (2019)
  5. Lee SY, Park SJ, J. Ind. Eng. Chem., 23, 1 (2015)
  6. Zhang G, Qu J, Du Y, Guo F, Zhao H, Zhang Y, Xu Y, J. Ind. Eng. Chem., 20(5), 2948 (2014)
  7. Sircar S, Golden TC, Sep. Sci. Technol., 35(5), 667 (2000)
  8. Lopes FVS, Grande CA, Rodrigues AE, Fuel, 93(1), 510 (2012)
  9. Wang YN, Rodrigues AE, Fuel, 84(14-15), 1778 (2005)
  10. Gao J, Li M, Hu Y, Chen H, Ma Y, Sci. China Inf. Sci., 62, 51201 (2019)
  11. Ribeiro AM, Grande CA, Lopes FVS, Loureiro JM, Rodrigues AE, Chem. Eng. Sci., 63(21), 5258 (2008)
  12. Saeedmanesh A, Colombo P, Mclarty D, Brouwer J, J. Electrochem. Energy Convers. Storage, 16 (2019)
  13. Lei Q, Wang B, Wang P, Liu S, J. Energy Chem., 162 (2019).
  14. Tayebi M, Lee BK, Renew. Sust. Energ. Rev., 111, 332 (2019)
  15. Liao M, Chen Y, Cheng Z, Wang C, Luo X, Bu E, Jiang Z, Liang B, Shu R, Song Q, Appl. Energy, 252 (2019)
  16. Steinberg M, Energy Conv. Manag., 36, 791 (1995)
  17. Shamsabadi AA, Kargari A, Babaheidari MB, Laki S, J. Ind. Eng. Chem., 19(5), 1680 (2013)
  18. Saeidi S, Fazlollahi F, Najari S, Iranshahi D, Klemes JJ, Baxter LL, J. Ind. Eng. Chem., 49, 1 (2017)
  19. Diglio G, Hanak DP, Bareschino P, Pepe F, Montagnaro F, Manovic V, Appl. Energy, 210, 1 (2018)
  20. Nguyen DD, Ngo SI, Lim YI, Kim W, Lee UD, Seo D, Yoon WL, Int. J. Hydrog. Energy, 44(3), 1973 (2019)
  21. Cavenati S, Grande CA, Rodrigues AE, J. Chem. Eng. Data, 49(4), 1095 (2004)
  22. Zhang ZJ, Zhang W, Chen X, Xia QB, Li Z, Sep. Sci. Technol., 45(5), 710 (2010)
  23. Dantas TLP, Luna FMT, Silva IJ, de Azevedo DCS, Grande CA, Rodrigues AE, Moreira RFPM, Chem. Eng. J., 169(1-3), 11 (2011)
  24. Brea P, Delgado JA, Agueda VI, Uguina MA, Chem. Eng. J., 355, 279 (2019)
  25. Abdeljaoued A, Relvas F, Mendes A, Chahbani MH, J. Environ. Chem. Eng., 6, 338 (2018)
  26. Golmakani A, Fatemi S, Tamnanloo J, Sep. Purif. Technol., 176, 73 (2017)
  27. Zhong J, Meng X, Pet. Refin. Eng., 49, 35 (2019)
  28. Tao W, Ma S, Xiao J, Benard P, Chahine R, Energy Procedia, 158, 1917 (2019)
  29. Xiao JS, Fang L, Benard P, Chahine R, Int. J. Hydrog. Energy, 43(30), 13962 (2018)
  30. Shi WR, Yang HW, Shen YH, Fu Q, Zhang DH, Fu B, Int. J. Hydrog. Energy, 43(41), 19057 (2018)
  31. Huang Q, Eic M, Environanotechnology, Elsevier, Amsterdam, pp.221 2010.
  32. Lopes FVS, Grande CA, Rodrigues AE, Chem. Eng. Sci., 66(3), 303 (2011)
  33. International Energy Agency, Hydrogen and fuel cells. Review of national R and D programs, (2004).
  34. Committee FCS, Information report on the development of a hydrogen quality guideline for fuel cell vehicles, SAE, J2719, Int. Organ. Stand. Hydrog. Fuel.Product Specif. 2, 14682 (2008).
  35. IOf S, Hydrogen Fuel.Product Specification.Part 2: Proton Exchange Membrane (PEM) Fuel Cell Applications for Road Vehicles, ISO/TS, pp.14682 2012.
  36. Iyuke SE, Daud WRW, Mohamad AB, Kadhum AAH, Fisal Z, Shariff AM, Chem. Eng. Sci., 55(20), 4745 (2000)
  37. Lu CY, Bai HL, Wu BL, Su FS, Fen-Hwang J, Energy Fuels, 22(5), 3050 (2008)
  38. Tamnanloo J, Fatemi S, Golmakani A, Adsorpt. Sci. Technol., 32, 707 (2014)
  39. Ahn S, You YW, Lee DG, Kim KH, Oh M, Lee CH, Chem. Eng. Sci., 68(1), 413 (2012)
  40. Yang JY, Lee CH, AIChE J., 44(6), 1325 (1998)
  41. Sereno C, Rodrigues A, Gas Sep. Purif., 7, 167 (1993)
  42. Liu Z, Grande CA, Li P, Yu JG, Rodrigues AE, Sep. Purif. Technol., 81(3), 307 (2011)