- Previous Article
- Next Article
- Table of Contents
Polymer(Korea), Vol.44, No.4, 415-424, July, 2020
에폭시 수지의 열 및 기계적 특성에 대한 Bridge Group의 영향
Influences of Bridge Group on Thermal and Mechanical Properties of Epoxy Resins
E-mail:
In order to obtain thermosetting epoxy resin, it is the prerequisite condition that the epoxy precursor must contain at least two epoxy groups. Thus, bridge group is needed to link the epoxy groups, and naturally, the chemical structure of the bridge group may also influence the thermomechanical performances of the cured epoxy resin. However, literature about the effects of bridge group on properties of cured epoxy is seldom published. To fill the gap, three model epoxy monomers containing different bridge groups have been synthesized from 4,4'-dihydroxydiphenyl, 1,1-bis(4-hydroxyphenyl)cyclohexane and bisphenol A in this work. After chemical structure confirmation, all of the monomers are cured by methylhexahydrophthalic anhydride (HMMPA), and the properties of the obtained cured network are evaluated by differential scanning calorimetry (DSC), dynamic thermomechanical analysis (DMA), tensile test and scanning electron microscope (SEM). The results show that bulky bridge group can effectively increase the glass transition temperature, enhance the tensile strength, and enlarge elongation at break of the cured epoxy resin.
- Ramezanzadeh B, Niroumandrad S, Ahmadi A, Mahdavian M, Moghadam MHM, Corrosion Sci., 103, 283 (2016)
- Hong Y, Jung S, Choi J, Polym. Korea, 31(6), 526 (2007)
- Zhai L, Ling G, Li J, Wang Y, Mater. Lett., 60, 3031 (2006)
- Rimdusit S, Ishida H, Polymer, 41(22), 7941 (2000)
- Shi Q, Yu K, KuanG X, Mu X, Dunn CK, Dunn ML, Wang T, Qi HJ, Mater. Horiz, 4, 598 (2017)
- Liang J, Wang Y, Huang Y, Ma Y, Liu Z, Cai J, Zhang C, Gao H, Chen Y, Carbon, 47, 922 (2009)
- Kumar S, Samal SK, Mohanty S, Nayak SK, PolymPlast. Technol., 57, 133 (2018)
- Zhou GD, Wang WT, Peng M, Polymer, 163, 20 (2019)
- Woo YJ, Kim DS, Polym. Korea, 43(3), 359 (2019)
- Schroeder JA, Madsen PA, Foister RT, Polymer, 28, 929 (1987)
- Lee JY, Jang JS, Hong SM, Hwang SS, Kim KU, Polymer, 40(11), 3197 (1999)
- Lee JY, Jang JS, Polymer, 47(9), 3036 (2006)
- Lee JY, Jang JS, Hwang SS, Hong SM, Kim KU, Polymer, 39(24), 6121 (1998)
- Jain P, Choudhary V, Varma IK, Eur. Polym. J., 39, 181 (2003)
- Pan G, Du Z, Zhang C, Li C, Yang X, Li H, Polym. J., 39, 478 (2007)
- Li YZ, Badrinarayanan P, Kessler MR, Polymer, 54(12), 3017 (2013)
- Han S, Kim WG, Yoon HG, Moon TJ, J. Polym. Sci. A: Polym. Chem., 36(5), 773 (1998)
- Erich W, Bodnar MJ, J. Appl. Polym. Sci., 3, 296 (1960)
- Shibata M, Ohkita T, Eur. Polym. J., 92, 165 (2017)
- Jin FL, Liu HC, Yang B, Park SJ, J. Ind. Eng. Chem., 24, 20 (2015)
- Kong L, Cheng Y, Jin Y, Qi T, Xiao F, J. Appl. Polym. Sci., 133, 43456 (2016)
- Cao J, Fan H, Li BG, Zhu SP, Polymer, 124, 157 (2017)
- Sanchezsoto M, Pages P, Lacorte T, Briceno K, Carrasco F, Compos. Sci. Technol., 67, 1974 (2007)
- Lin RH, J. Polym. Sci. A: Polym. Chem., 38(16), 2934 (2000)
- Wu T, Li Y, Wu Q, Song L, Wu G, Eur. Polym. J., 41, 2216 (2005)
- Balizer E, Duffy JV, Polymer, 33, 2114 (1992)
- Duffy JV, Lee GF, J. Appl. Polym. Sci., 35, 1367 (1988)
- Gu JW, Yang XT, Lv ZY, Li N, Liang CB, Zhang QY, Int. J. Heat Mass Transf., 92, 15 (2016)
- Johnson WS, Bauer VJ, Margrave JL, Frisch MA, Dreger LH, Hubbard WN, J. Am. Chem. Soc., 83, 606 (1961)
- Chandramohan A, Alagar M, Int. J. Polym. Anal. Charact., 18, 73 (2013)
- Ayatollahi MR, Shadlou S, Shokrieh MM, Eng. Fract. Mech., 78, 2620 (2011)