화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.33, No.1, 71-77, February, 2022
질소 플라즈마 표면처리가 쌀겨 기반 활성탄소의 전기 이중층 커패시터 성능에 미치는 영향
Effect of Nitrogen Plasma Surface Treatment of Rice Husk-Based Activated Carbon on Electric Double-Layer Capacitor Performance
E-mail:
초록
바이오매스 활용을 높이기 위하여, 쌀겨 기반 활성탄소(RHAC)를 제조한 뒤 질소 플라즈마 표면처리를 수행하여 전기 이중층 커패시터(EDLC) 성능을 고찰하였다. 질소 플라즈마 표면처리를 통하여, RHAC 표면에 최대 2.17%의 질소가 도입되었으며 특히, 5 min 동안 반응한 샘플의 경우 pyrrolic/pyridine계 N 작용기의 형성이 우세하였다. 또한, 실리카 제거에 의해 쌀겨 기반 탄소재에 메조기공이 형성되었고 질소 플라즈마 표면처리에 의해 탄소재 표면 거칠기가 증가하여 미세기공이 많이 형성되는 것을 확인할 수 있었다. 순환전압전류법 측정 실험으로부터, 5 mV/s의 전압 주사 속도에서 질소 플라즈마 처리된 RHAC의 비정전용량은 최대 200 F/g로, 미처리 RHAC (111 F/g)에 비교하여 80.2% 향상된 값을 나타내었다. 이러한 결과는 질소 플라즈마 표면처리로 인해 탄소재 표면에 도입된 pyrrolic/pyridine계 질소 작용기 도입과 탄소재 표면 미세기공 부피 향상으로 인한 시너지 효과인 것으로 판단된다. 본 연구는 폐기 자원을 재활용하고, 플라즈마 표면처리법을 통해 이종원소 도입을 한다는 점에서 환경적으로 긍정적인 영향을 미칠 것으로 사료된다.
To increase biomass utilization, rice husk-based activated carbon (RHAC) followed by nitrogen plasma surface treatment was prepared and the electric double-layer capacitor performance was investigated. Through nitrogen plasma surface treatment, up to 2.17% of nitrogen was introduced to the surface of RHAC, and in particular the sample reacted for 5 min with nitrogen plasma showed dominant formation of pyrrolic/pyridine N functional groups. In addition, mesopores were formed on the RHAC material by the removal of silica, and the surface roughness of the carbon material increased by nitrogen plasma surface treatment, resulting in the formation of many micropores. As a result of cyclic voltammetry measurement, at a scan rate of 5 mV/s, the specific capacitance of the RHAC treated with nitrogen plasma increased up to 200 F/g, showing an 80.2% improvement compared to that of using untreated RHAC (111 F/g). This is attributed to the synergetic effect of the introduction of pyrrolic/pyridine-based nitrogen functional groups and the increase of the micropore volume on the surface of the carbon material. This study has a positive effect on the environment in terms of recycling waste resources and using plasma surface treatment.
  1. Zhao J, Jiang Y, Fan H, Liu M, Zhuo O, Wang X, Wu Q, Yang L, Ma Y, Hu Z, Adv. Mater., 29, 160456 (2017)
  2. Zheng S, Wu ZS, Wang S, Xiao H, Zhou F, Sun C, Bao X, Cheng HM, Energy Storage Mater., 6, 70 (2017)
  3. Zhi M, Xiang C, Li J, Li M, Wu N, Nanoscale, 5, 72 (2013)
  4. Emmenegger C, Mauron P, Sudan P, Wenger P, Hermann V, Gallay R, Zuttel A, J. Power Sources, 124(1), 321 (2003)
  5. Kim KH, Park MS, Jung MJ, Lee YS, Appl. Chem. Eng., 26(5), 598 (2015)
  6. Gao Y, Li L, Jin YM, Wang Y, Yuan CJ, Wei YJ, Chen G, Ge JJ, Lu HY, Appl. Energy, 153, 41 (2015)
  7. Li B, Xiao Z, Chen M, Huang Z, Tie X, Zai J, Qian X, J. Mater. Chem. A, 5, 24502 (2017)
  8. Chen Z, Wang X, Xue B, Li W, Ding Z, Yang X, Qiu J, Wang Z, Carbon, 161, 432 (2020)
  9. Eguchi T, Sawada K, Tomioka M, Kumagai S, Electrochim. Acta, 394, 139115 (2021)
  10. Chen XL, Li WS, Tan CL, Li W, Wu YZ, J. Power Sources, 184(2), 668 (2008)
  11. Kim HG, Lee YS, Carbon Lett., 29, 529 (2019)
  12. Hsieh CT, Teng H, Carbon, 40, 667 (2002)
  13. Lee RE, Lim CH, Kim MJ, Lee YS, Appl. Chem. Eng., 32(1), 55 (2021)
  14. Song EJ, Adsorption Characteristics for Volatile Organic Compounds on Activated Carbon Fibers according to Introduction Method of Fluorine and Oxygen Functional groups, Daejeon, Korea (2019).
  15. Chen L, Ji T, Mu L, Zhu J, Carbon, 111, 839 (2017)
  16. Sharifi T, Nitze F, Barzegar HR, Tai CW, Mazurkiewicz M, Malolepszy A, Stobinski L, Wagberg T, Carbon, 50, 3535 (2012)
  17. Seo SW, Choi YJ, Kim JH, Cho JH, Lee YS, Im JS, Carbon Lett., 29, 385 (2019)
  18. Jung JY, Lee YS, Carbon Lett., 27, 112 (2018)
  19. Motlagh EK, Sharifian S, Asasian-Kolur N, Bioresour. Technol. Rep., 16, 100853 (2021)
  20. Orita A, Kamijima K, Yoshida M, Yang L, J. Power Sources, 195(19), 6970 (2010)
  21. Notohara H, Urita K, Yamamura H, Moriguchi I, Sci. Rep., 8, 1 (2018)
  22. Jung MJ, Ko YY, Kim KH, Lee YS, Appl. Chem. Eng., 28(6), 638 (2017)
  23. Jin Z, Yan X, Yu Y, Zhao G, J. Mater. Chem. A, 2, 11706 (2014)
  24. Shin DY, Sung KW, Ahn HJ, Appl. Surf. Sci., 478, 499 (2019)
  25. Kim J, Chun J, Kim SG, Ahn H, Roh KC, J. Electrochem. Sci. Technol., 8, 338 (2017)
  26. Kim YK, Shin KY, J. Ind. Eng. Chem., 94, 122 (2021)
  27. Tagaya T, Hatakeyama Y, Shiraishi S, Tsukada H, Mostazo-Lpez MJ, Moralln E, Cazorla-Amors D, J. Electrochem. Soc., 167, 060523 (2020)
  28. Sankar KV, Selvan RK, Vignesh RH, Lee Y, RSC Adv., 6, 67898 (2016)
  29. Fu P, Zhou L, Sun L, Huanga B, Yuan Y, RSC Adv., 7, 13383 (2017)
  30. Ferreira FV, Souza LP, Martins TM, et al., Nanoscale, 11, 19842 (2019)
  31. Polat S, Atun G, J. Ind. Eng. Chem., 99, 107 (2021)
  32. Lim JW, Effect of surface modification of anode active materials on electrochemical performance of EDLC, Daejeon, Korea (2011).
  33. Iro ZS, Subramani C, Rajendran J, Sundramoorthy AK, Carbon Lett., 31, 1145 (2021)
  34. Tian K, Wang J, Cao L, Yang W, Guo W, Liu S, Li W, Wang F, Li X, Xu Z, Nat. Commun., 11, 1 (2020)
  35. Kim KS, Kang SC, Lee JD, Im JS, Appl. Chem. Eng., 32(1), 117 (2021)
  36. Kim SJ, Bai BC, Kim MI, Lee YS, Carbon Lett., 30, 585 (2020)
  37. Huang CL, Chiang LM, Su CA, Li YY, J. Ind. Eng. Chem., 103, 142 (2021)