화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.107, 224-238, March, 2022
Interference of oxygen during the solution combustion synthesis process of ZnO particles: Experimental and data modeling approaches
E-mail:
In the present study, the ratio of reducing to oxidizing (F/O) elements as an indicator for maximum oxygen interference during the solution combustion synthesis (SCS) process of ZnO particles was determined using simple mathematical calculations. The obtained result was called special point (S.P). To interpret the role of S.P in the SCS reactions, ZnO particles were synthesized in the presence of citric acid, hexamine, hydrazine, and urea with various F/O values (0.75, 1, 1.25). The correlations between the S.P, physicochemical properties of the synthesized ZnO powders, and density functional theory (DFT) predictions were investigated. X-ray diffraction results, band-gap values, oxygen vacancy data, DFT results, and S.P points demonstrated the direct relation of these parameters. According to the S.P idea, it can be affirmed that the structural defects, particle size, optical band-gap (Eg = 3.06), the color of the products, the magnetic properties (0.2 emu/g), and the antibacterial inhibitory (15.625 µg/mL) of the synthesized particles were controlled via the interference of O2 during the synthesis process. In fact, the S.P investigation was suggested that the reaction rate of the combustion synthesis process could regulate the properties of ZnO particles.
  1. Kermani F, Mollazadeh S, Kargozar S, Khakhi JV, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 118, 1 (2021)
  2. Kermani F, Gharavian A, Mollazadeh S, Kargozar S, Youssefi A, Khaki JV, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 111, 110828 (2020)
  3. Mandizadeh S, Soofivand F, Salavati-Niasari M, Bagheri S, J. Ind. Eng. Chem., 26, 167 (2015)
  4. Kazemi H, Kermani F, Mollazadeh S, Khakhi JV, Int. J. Appl. Ceram. Technol., 17(4), 1852 (2020)
  5. Aali H, Mollazadeh S, Khaki JV, Ceram. Int., 44(16), 20267 (2018)
  6. Saghir AV, Beidokhti SM, Khaki JV, Salimi A, J. European Ceram. Soc., 41(1), 563 (2021)
  7. Aali H, Azizi N, Baygi NJ, Kermani F, Mashreghi M, Youssefi A et al., Ceram. Int., 45(15), 19127 (2019)
  8. Varma A, Mukasyan AS, Rogachev AS, Manukyan KV, Chem. Rev., 116, 14493 (2016)
  9. Kermani F, Mollazadeh S, Khaki JV, Ceram. Int., 45(10), 13496 (2019)
  10. Aali H, Mollazadeh S, Khaki JV, Ceram. Int., 45(14), 17775 (2019)
  11. Kermani F, Mollazadeh S, Kargozar S, Khakhi JV, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 124 (2021)
  12. Aali H, Baygi NJ, Mollazadeh S, Khaki JV, Ceram. Int. (2021)
  13. Ansari AS, Han JW, Shong B, J. Ind. Eng. Chem., 96, 236 (2021)
  14. Ghouri ZK, Badreldin A, Elsaid K, Kumar D, Youssef K, Abdel-Wahab A, J. Ind. Eng. Chem., 96, 243 (2021)
  15. Aslam R, Mobin M, Huda, Shoeb M, Murmu M, Banerjee P, J. Ind. Eng. Chem., 100, 333 (2021)
  16. Hao M, Qiu M, Yang H, Hu B, Wang X, Sci. Total Environ., 760 (2021)
  17. Yao L, Yang H, Chen Z, Qiu M, Hu B, Wang X, Chemosphere, 273 (2021)
  18. Qiu M, Hu B, Chen Z, Yang H, Zhuang L, Wang X, Biochar, 3(2), 117 (2021)
  19. Alavi M, Karimi N, Salimikia I, J. Ind. Eng. Chem., 72, 457 (2019)
  20. Das NSK, Nair RG, Nano-struct. Nano-objects, 19, 100353 (2019)
  21. Bharat TC, Shubham, Mondal S, Gupta HS, Das PK, Singh AK, Mater. Today Proc., 11, 767 (2019)
  22. Huang L, Hao Y, Hu M, Mater. Sci. Semicond. Process, 74(42887), 303 (2018)
  23. Pathak TK, Kumar A, Swart CW, Swart HC, Kroon RE, RSC Adv., 6(100), 97770 (2016)
  24. Roine A, (2019).
  25. Fathi A, Kermani F, Behnamghader A, Banijamali S, Mozafari M, Baino F et al., Biomed. Glas., 6(1), 57 (2021)
  26. Wang Y, Puggioni D, Rondinell JMi, 115149, 1-15, (2019).
  27. Choudhary K, Tavazza F, Comput. Mater. Sci., 161, 300 (2019)
  28. Wisesa P, Mcgill KA, Mueller T, 155109(April), 1-10, (2016).
  29. Yamijala SSRKC, Ali ZA, Wong BM, J. Phys. Chem. C, 123(41), 25113 (2019)
  30. Meyer B, Marx D, J. Phys. Condens. Matter, 15(2), 89 (2003)
  31. Jin SH, Yoon Y, Jo Y, Lee SY, Moon HS, Seok S et al., J. Ind. Eng. Chem., 96, 376 (2021)
  32. Zhang X, Han Y, Liu W, Pan N, Li D, Chai J, J. Ind. Eng. Chem., 97, 326 (2021)
  33. Kunj S, J. Ind. Eng. Chem., 92, 145 (2020)
  34. Kunj S, Sreenivas K, J. Ind. Eng. Chem., 60, 151 (2018)
  35. Mollaei Z, Kermani F, Moosavi F, Kargozar S, Khakhi JV, Mollazadeh, Ceram. Int. (2021)
  36. Pathak TK, Swart HC, Kroon RE, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 190, 164 (2018)
  37. Ianos R, Laz?u R, Boruntea RC, Ceram. Int., 41(2), 3186 (2015)
  38. Ianos R, Bosca M, Lazau R, Ceram. Int., 40(Part B), 10223 (2014)
  39. Kermani F, Beidokhti SM, Baino F, Gholamzadeh-Virany Z, Mozafari M, Kargozar S, Materials, 13(6), 1348 (2020)
  40. Ray SK, Hur J, J. Ind. Eng. Chem., 101, 28 (2021)
  41. Kim DH, Jeon SJ, Han YW, Kim YH, Yang NG, Lee HS et al., J. Ind. Eng. Chem., 101, 135 (2021)
  42. Hossain MA, Jeon S, Ahn J, Joh H, Bang J, Oh SJ, J. Ind. Eng. Chem., 73, 214 (2019)
  43. Anitha S, Muthukumaran S, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 108 (2020)
  44. Chen S, Xiao Y, Wang Y, Hu Z, Zhao H, Xie W, Nanomaterials, 8(4), 1 (2018)
  45. Nosaka Y, Nosaka AY, Chem. Rev., 117(17), 11302 (2017)
  46. Sindhu HS, Rajendra BV, Hebbar ND, Kulkarni SD, Babu PD, J. Lumines., 199, 423 (2018)
  47. Ma N, Zhang Y, Cao E, Sun L, Hao W, Yang Z, 727(January), 6-10, (2019).
  48. Baygi NJ, Saghir AV, Beidokhti SM, Khaki JV, Ceram. Int., 46(10), 15417 (2020)
  49. Kim J, Im Y, Park KS, Cho TW, Jeon J, Chung KI, Kang M, J. Ind. Eng. Chem., 56, 463 (2017)
  50. Bao Y, Gao L, Feng C, Ma J, Zhang W, Liu C et al., J. Ind. Eng. Chem., 82, 180 (2020)
  51. Yoon J, Oh SG, J. Ind. Eng. Chem., 96, 390 (2021)
  52. Kolodziejczak-Radzimska A, Jesionowski T, Materials (Basel)., 7(4), 2833 (2014)
  53. Phan DN, Rebia RA, Saito Y, Kharaghani D, Khatri M, Tanaka T et al., J. Ind. Eng. Chem., 85, 258 (2020)
  54. Sirelkhatim A, Mahmud S, Seeni A, Nano-Micro Lett., 7, 219 (2015)