Applied Chemistry for Engineering, Vol.33, No.2, 126-132, April, 2022
금속 나노입자 도입형의 초고감도 센서 개발 및 알칼라인 연료 측정에 적용 연구
Development on Metallic Nanoparticles-enhanced Ultrasensitive Sensors for Alkaline Fuel Concentrations
E-mail:
초록
암모니아 및 하이드라진 등의 액체연료를 사용하는 알칼라인 연료전지는 높은 에너지 밀도, 저장 및 운송의 용이성, 경제성 등의 장점으로 청정 및 재생 에너지 솔루션으로 각광받고 있다. 하지만 환원극에서 플러딩, 연료 크로스오버 현상, 부반응생성물, 연료 안정성 및 독성 등의 문제들이 여전히 이슈가 되고 있다. 이 중 효율적인 에너지 생산을 위해 산화극에서 산화되어야 하는 연료의 손실을 사전에 감지할 수 있는 연료 모니터링 시스템의 개발은 알칼라인 연료를 사용하는 연료 전지의 성능 향상에 큰 도움을 줄 것으로 사료된다. 하이드라진 및 암모니아의 농도를 실시간 으로 측정 가능한 센싱 플랫폼이 다수 개발되어왔으며, 이 중 높은 선택성 및 민감도, 신속한 실시간 모니터링, 플랫폼 의 휴대화 등의 장점을 갖는 전기화학적 센서 개발 연구 분야의 최신 동향에 대해 소개하고자 한다. 특히 센서의 감도 및 선택성 증대를 위해 다양한 금속성, 금속산화물 나노소재 및 하이브리드 나노소재를 접목하는 연구 방향에 대해 중점적으로 소개하고자 한다.
Alkaline fuel cells using liquid fuels such as hydrazine and ammonia are gaining great attention as a clean and renewable energy solution possibly owing to advantages such as excellent energy density, simple structure, compact size in fuel container, and ease of storage and transportation. However, common shortcomings including cathode flooding, fuel crossover, side yield reactions, and fuel security and toxicity are still challenging issues. Real time monitoring of fuel concentrations integrated into a fuel cell device can help improving fuel cell performance via predicting any loss of fuels used at a cathode for efficient energy production. There have been extensive research efforts made on developing real-time sensing platforms for hydrazine and ammonia. Among these, recent advancements in electrochemical sensors offering high sensitivity and selectivity, easy fabrication, and fast monitoring capability for analysis of hydrazine and ammonia concentrations will be introduced. In particular, research trend on the integration of metallic and metal oxide nanoparticles and also their hybrids with carbon-based nanomaterials into electrochemical sensing platforms for improvement in sensitivity and selectivity will be highlighted.
Keywords:Alkaline fuel;Hydrazine;Ammonia;Metallic and metal oxide nanoparticles;Carbon nanomaterials;Electrochemical sensor
- Dai W, Wen H, Zhang Z, Wang P, J. Alloy. Compd., 902, 163746 (2022)
- Askari MB, Salarizadeh P, Beitollahi H, Tajik S, Eshghi A, Azizi S, Mater. Chem. Phys., 275, 125313 (2022)
- Jeerh G, Zhang M, Tao S, J. Mater. Chem. A, 9, 727 (2021)
- Uhm S, Hong S, Lee J, Appl. Chem. Eng., 30, 652 (2019)
- Chen C, Wen H, Tang PP, Wang P, ACS Sustain. Chem. Eng., 9, 4564 (2021)
- Hren M, Božič M, Fakin D, Kleinschek KS, Gorgieva S, Sustain. Energy Fuels, 5, 604 (2021)
- Akinyele D, Olabode E, Amole A, Inventions, 5, 42 (2020)
- Shaari N, Kamarudin SK, Bahru R, Osman SH, Ishak NAIM, Int. J. Energy Res., 45, 6644 (2021)
- Banga I, Paul A, Muthukumar S, Prasad S, ACS Appl. Mater. Interfaces, 13, 16155 (2021)
- Ahmad R, Bedük T, Majhi SM, Salama KN, Sens. Actuators B-Chem., 286, 139 (2019)
- Franco FF, Manjakkal L, Shakthivel D, Dahiya R, IEEE Sens. J., 1 (2019)
- Wang C, Yang B, Liu H, Xia F, Xiao J, Sens. Actuators B-Chem., 316, 128140 (2020)
- Liu X, Yang Z, Sheng Q, Zheng J, J. Electrochem. Soc., 165, B596 (2018)
- Gowthaman NSK, Shankar S, John SA, ACS Sustain. Chem. Eng., 6, 17302 (2018)
- Wallace SW, McCrum IT, Janik MJ, Catal. Today, 371, 50 (2021)
- Liu H, Liu Y, Li M, Liu X, Luo J, Mater. Today Adv., 7, 100083 (2020)
- Feng Z, Zhang H, Gao B, Lu P, Li D, Xing P, Int. J. Hydrog. Energy, 45, 19335 (2020)
- Yin Y, Zhang H, Huang P, Xiang C, Zou Y, Xu F, Sun L, Mater. Res. Bull., 99, 152 (2018)
- Annalakshmi M, Balasubramanian P, Chen SM, Chen TW, Sens. Actuators B-Chem., 296, 126620 (2019)
- Bagal IV, Ejaz A, Waseem A, Johar MA, Hassan MA, Han JH, Ryu SW, ACS Appl. Nano Mater., 3, 4394 (2020)
- Zhang Y, Zhang Y, Zhang D, Li S, Jiang C, Su Y, Sens. Actuators B-Chem., 285, 607 (2019)
- Rahman MM, Alam MM, Alamry KA, Ind. Eng. Chem., 77, 309 (2019)
- Duan C, Dong Y, Sheng Q, Zheng J, Talanta, 198, 23 (2019)
- Asadi F, Azizi SN, Ghasemi S, J. Mater. Sci. -Mater. Med., 30, 5410 (2019)
- Giroud F, Gross AJ, Junior DF, Holzinger M, de Campos CEM, Acuña JJS, Domingos JB, Cosnier S, J. Electrochem. Soc., 164, H3052 (2016)
- Lee KK, Loh PY, Sow CH, Chin WS, Biosens. Bioelectron., 39, 255 (2013)
- Babanova S, Martinez U, Artyushkova K, Asazawa K, Tanaka H, Atanassov P, J. Electrochem. Soc., 161, H79 (2013)
- Deroco PB, Melo IG, Silva LSR, Eguiluz KIB, Salazar-Banda GR, Fatibello-Filho O, Sens. Actuators B-Chem., 256, 535 (2018)
- Zhang L, Liu J, Peng X, Cui Q, He D, Zhao C, Suo H, Synth. Met., 259 (2020)
- Zhang H, Wang Y, Zhang B, Yan Y, Xia J, Liu X, Qiu X, Tang Y, Electrochim. Acta, 304, 109 (2019)
- Sato T, Ikeda H, Miura N, ECS Electrochem. Lett., 3, B13 (2014)
- Zhang L, Wan J, Li J, Cui Q, He D, Zhao C, Suo H, J. Electrochem. Soc., 167, 027537 (2020)
- Baciu A, Manea F, Pop A, Pode R, Schoonman J, Process Saf. Environ. Protect., 108, 18 (2017)
- Zhybak MT, Vagin MY, Beni V, Liu X, Dempsey E, Turner APF, Korpan YI, Microchim. Acta, 183, 1981 (2016)
- Sekhar PK, Graf D, Ojelere O, Saha TK, Riheen MA, Mathur S, J. Electrochem. Soc., 167, 027548 (2020)
- Elumalai P, Plashnitsa VV, Fujio Y, Miura N, Electrochem. Solid State Lett., 11, J79 (2008)
- Tabr FA, Salehiravesh F, Adelnia H, Gavgani JN, Mahyari M, Talanta, 197, 457 (2019)
- Feng Z, Li D, Wang L, Sun Q, Lu P, Xing P, An M, J. Alloy. Compd., 788, 1240 (2019)
- Sarno M, Ponticorvo E, Electrochem. Commun., 107, 106510 (2019)
- Teymoori N, Raoof JB, Khalilzadeh MA, Ojani R, J. Iran. Chem. Soc., 15, 2271 (2018)
- Lee S, Lee HJ, Appl. Chem. Eng., 30, 667 (2019)
- Yang H, Kim I, Ko Y, Kim S, Kim W, Appl. Chem. Eng., 27, 265 (2016)
- Nagita K, Yuhara Y, Fujii K, Katayama Y, Nakayama M, ACS Appl. Mater. Interfaces., 13, 28098 (2021)
- Park MS, Choi KY, Appl. Chem. Eng., 28, 685 (2017)
- Lee HH, Kim KW, Hong SC, Appl. Chem. Eng., 24, 494 (2013)
- Singh S, Deb J, Sarkar U, Sharma S, ACS Sustain. Chem. Eng., 9, 7328 (2021)