Journal of Industrial and Engineering Chemistry, Vol.109, 530-537, May, 2022
Direct printing of surface-embedded stretchable graphene patterns with strong adhesion on viscous substrates
E-mail:
The graphene patterns with piezoresistance behaviors, originating from the structural deformation and band-structure shift under strain, represent an attractive characteristic for developing the small strain (<10%) sensors for wearable devices. However, the insufficient adhesion between the patterns and substrates has significantly limited their utility and reliability. Here, the surface-embedded graphene patterns were directly deposited on polydimethylsiloxane (PDMS) surfaces without hydrophilic treatment via the embedded droplet printing (EDP). The viscous PDMS films instead of the solid ones were used as substrates, and the graphene patterns were partly embedded onto the viscous PDMS surfaces. To assess the adhesion performance, a series of tests were performed. In the bending and tensile tests, the patterns strongly adhered to the PDMS films. Further, the patterns had a favorable increase in resistance in the tensile strain range of 0–3.5%. The resistance of the surface-embedded graphene patterns exhibited a negligible change for over 3 min in the ultrasonic bath. Finally, the relative resistance R/R0 remained constant after the first two adhesion tests using a 3M tape. The surface-embedded graphene patterns exhibited a strong adhesion to the flexible/stretchable substrates, indicating the application prospect in the field of flexible devices.
Keywords:Direct printing;Surface-embedded lines;Stretchable graphene;Mechanical stability;Strong adhesion;Uniform droplet inkjet
- Skrypnychuk V, Boulanger N, Nordenstrom A, Talyzin A, J. Phys. Chem. Lett., 11, 3032 (2020)
- Chae MS, Lee TH, Son KR, Yong WK, Hwang KS, Kim TG, Nanoscale Horiz., 4, 610 (2019)
- Kamyshny A, Magdassi S, Chem. Soc. Rev., 48, 1712 (2019)
- Yaragalla S, Dussoni S, Zahid M, Maggiali M, Metta G, Athanasiou A, Bayer IS, J. Ind. Eng. Chem., 101, 348 (2021)
- Xu Y, Fei Q, Page M, Zhao G, Yan Z, Nano Res., 14, 3033 (2021)
- Soojin L, Boseok K, Donghoon K, Wi HL, Jung AL, Kilwon C, J. Phys. Chem. C, 116, 7520 (2012)
- Park M, Ha J, Song H, Bae J, Park S, J. Ind. Eng. Chem., 68, 387 (2018)
- Secor EB, Gao TZ, Islam AE, Rao R, Wallace SG, Zhu J, Putz KW, Maruyama B, Hersam MC, Chem. Mater., 29, 2332 (2017)
- Inoue A, Yuk H, Lu B, Zhao X, Sci. Adv., 12, 5394 (2020)
- Lee SM, Oh S, Chang ST, ACS Appl. Mater. Interfaces, 11, 4541 (2019)
- Jeon EB, Joo EB, Ahn H, Kim HS, Thin Solid Films, 603, 382 (2016)
- Chena D, Kanga Z, Bessho T, J. Ind. Eng. Chem., 52, 73 (2017)
- Sin Y, Huang C, Lin C, Chih J, Hsieh Y, Tsao Y, Li J, Su C, Carbon, 169, 248 (2020)
- Wu J, Wang R, Yu H, Li G, Xu K, Tien NC, Roberts RC, Li D, Lab Chip, 15, 690 (2015)
- Chung S, Lee J, Song H, Kim S, Hong Y, Appl. Phys. Lett., 98, 9966 (2011)
- Kim Y, Ren X, Kim JW, Noh H, J. Micromech. Microeng., 24, 115010 (2014)
- Zhang RR, Qi LH, Lian HC, Luo J, J. Phys. D-Appl. Phys., 38, 385301 (2020)
- Jiang J, Bao B, Li M, Sun J, Zhang C, Li Y, Li F, Yao X, Song Y, Adv. Mater., 28, 1420 (2016)
- Al-Milaji KN, Huang Q, Li Z, Ng TN, Zhao H, ACS Appl. Electron. Mater., 2, 3289 (2020)
- Cheng T, Zhang YZ, Lai WY, Chen Y, Zeng WJ, Huang W, J. Mater. Chem. C, 2, 10369 (2014)
- Hokari R, Kurihara K, Takada N, Hiroshima H, Appl. Phys. Lett., 111, 063107 (2017)
- Chu T, Zhang Z, Tao Y, Adv. Mater. Technol., 3, 1700321 (2018)
- Lian HC, Qi LH, Luo J, Zhang RR, 2d Mater., 8, 035004 (2021)
- Liang YT, Hersam YT, J. Am. Chem. Soc., 39, 17661 (2010)
- Hyun WJ, Secor EB, Hersam MC, Frisbie CD, Francis LF, Adv. Mater., 27, 109 (2015)
- Gao Y, Shi W, Wang W, Leng Y, Zhao W, Ind. Eng. Chem. Res., 53, 16777 (2014)
- Bao B, Jiang JK, Li FY, Zhang PC, Chen SR, Yang Q, Wang ST, Su B, Jiang L, Song YL, Adv. Funct. Mater., 25, 3286 (2015)
- Sebilleau J, Langmuir, 29, 12118 (2013)
- Li W, Ji W, Lan D, Wang Y, J. Phys. Chem. Lett., 10, 6184 (2019)
- Diez JA, Kondic L, Phys. Fluids, 19, 72107 (2007)
- Fowlkes J, Horton S, Cabrera MF, Rack PD, Angew. Chem.-Int. Edit., 51, 8768 (2012)
- Mora S, Phou T, Fromental J, Phys. Rev. Lett., 105, 214301 (2010)
- Mecozzi L, Gennari O, Coppola S, Olivieri F, Rega R, Mandracchia B, Vespini V, Bramanti A, Ferraro P, Grilli S, ACS Appl. Mater. Interfaces, 10, 2122 (2018)
- Brochard-Wyart F, Jean-Marc M, David Q, Pierre-Gilles G, Langmuir, 7, 335 (1991)
- Alberto FN, Pairam E, Phys. Rev. Lett., 102, 234501 (2009)
- Zhang RR, Qi LH, Lian HC, Luo J, J. Ind. Eng. Chem., 105, 138 (2022)
- Appiagyei AB, Banua J, Han JI, J. Ind. Eng. Chem., 100, 372 (2021)
- Le TSD, An J, Huang Y, Vo Q, Boonruangkan J, Tran T, Kim SW, Sun G, Kim JY, ACS Nano, 13, 13293 (2019)
- Yang T, Wang W, Huang Y, Jiang X, Zhao X, ACS Appl. Mater. Interfaces, 12, 57352 (2020)
- Song D, Mahajan A, Secor EB, Hersam MC, Francis LF, Frisbie CD, ACS Nano, 11, 7431 (2017)
- Chi HC, Shin K, Kim KY, Choi YJ, Appl. Surf. Sci., 485, 484 (2019)
- Yan C, Cho JH, Ahn JH, Nanoscale, 4, 4870 (2012)
- Lee SK, Jang HY, Jang S, Choi E, Hong BH, Lee J, Park S, Ahn JH, Nano Lett., 12, 3472 (2012)
- Fu X, Liao ZM, Zhou JX, Zhou YB, Wu HC, Zhang R, Jing G, Xu J, Wu X, Guo W, Yu D, Appl. Phys. Lett., 99, 213107 (2011)
- Li X, Yang T, Yang Y, Zhu J, Li L, Alam FE, Li X, Wang K, Cheng H, Lin C, Fang Y, Zhu H, Adv. Funct. Mater., 26, 1322 (2016)
- Zhao J, Wang G, Yang R, Lu X, Cheng M, He C, Xie G, Meng J, Shi D, Zhang G, ACS Nano, 9, 1622 (2015)
- Lee SW, Park JJ, Park BH, Mun SC, Park YT, Liao K, Seo TS, Hyun WJ, Park O, ACS Appl. Mater. Interfaces, 9, 11176 (2017)
- Kong D, Le LT, Li Y, Zunino JL, Lee W, Langmuir, 28, 13467 (2012)