화학공학소재연구정보센터
Polymer(Korea), Vol.38, No.3, 286-292, May, 2014
고농축 복합화약 시뮬란트: Exact/Dechlorane 현탁계의 유변물성
Highly Concentrated Polymer Bonded Explosive Simulant: Rheology of Exact/Dechlorane Suspension
E-mail:
초록
에너지 고분자인 poly(BAMO-AMMO)와 유사한 특성을 갖는 폴리에틸렌 플라스토머인 Exact를 고분자 결합제로, RDX(research department explosive)와 유사한 특성을 갖는 dechlorane을 충전제로 사용한 고농축 복합화약 시뮬란트 현탁계의 유변물성을 연구하였다. 회분식 용융혼련기를 사용하여 현탁계의 혼화거동을 조사하였는데 상당한 점성소산열이 발생하였다. 충전율이 70 v% 이상에서는 토크의 지속적인 감소가 있었는데 이는 벽면 미끌어짐 현상에 기인한다고 사료되었다. SEM 관찰 결과 충전제 입자들은 잘 분산되어 있었고 혼화 조건의 영향은 크지 않은 것으로 판단되었다. 현탁계의 뚜렷한 전단박화(shear thinning) 특성으로 인하여 낮은 전단속도의 평판-평판 레오미터에서 측정이 어려운 고충전 현탁계도 높은 전단속도의 모세관 레오미터에서 유변물성 측정이 가능하였다.
The rheology of highly concentrated polymer bonded explosive (PBX) simulant was studied. An energy material, polyethylene plastomer (ExactTM) having similar properties to poly(BAMO-AMMO) was selected as a binder. Dechlorane with similar properties to RDX (Research Department eXplosive) was chosen as a filler. Mixing behavior in a batch melt mixer was investigated. During mixing a large amount of heat of viscous dissipation was generated and a continuous decrease in torque was observed when the filler content was above 70 v%. It was believed due to wall slip phenomena. From the SEM images, the fillers were well dispersed and the effect of mixing condition affected slightly on the dispersion. Owing to distinct shear thinning behavior of the suspensions, measuring viscosity of highly filled suspensions was possible in a high shear rate capillary rheometer though it was impossible even in a low shear rate plateplate rheometer.
  1. Gallant FM, Bruck HA, Prickett SE, Cesarec M, Compos. Part A - Appl. S., 37, 957 (2006)
  2. Kavetsky R, Anand D, Goldwasser J, Bruck H, Doherty RM, Armstrong RW, Int. J. Energ. Mater. Chem. Prop., 6, 39 (2007)
  3. Villmow T, Potschke P, Pegel S, Haussler L, Kretzschmar B, Polymer, 49(16), 3500 (2008)
  4. Villmow T, Kretzchmar B, Potschke P, Compos. Sci. Tech., 70, 2045 (2010)
  5. Peltola P, Valipakka E, Vuorinen J, Syrjala S, Hanhi K, Polym. Eng. Sci., 46(8), 995 (2006)
  6. Becuwe A, Delclos A, Propellants, Explosives, Pyrotechnics, 18, 1 (1993)
  7. Reed R, Brady VL, U.S. Patent 5,756,006
  8. Ozkan S, Gevgilili H, Kalyon DM, Kowalczyk J, Mezger M, J. Energ. Mater., 25, 173 (2007)
  9. Kalyon DM, Yaras P, Aral B, Yilmazer U, J. Rheol., 37, 35 (1993)
  10. Baer MR, Trott WM, “Theoretical and experimental mesoscale studies of impact loaded granular explosive and simulant materials”, 12th International Detonation Symposium, August 11-16th (2002)
  11. Grantham SG, Siviour CR, Proud WG, Field JE, Meas. Sci. Technol., 15, 1867 (2004)
  12. Millett JCF, Bourne NK, J. Phys. D: Appl. Phys., 37, 2613 (2004)
  13. Colak OU, Turkish J. Eng. Env. Sci., 28, 55 (2004)
  14. Sheffield SA, Gustavsen RL, Alcon RR, AIP Conference Proceedings, 429, Amherst APS, MA (U.S.), 27 Jul- 1 Aug (1997)
  15. Corky J, Riedel W, Hiermaier WS, Weidemaier P, Thoma K, Shock Compression of Condensed Matter, CP620 (2001)
  16. Patenaude KJ, Thesis MS, University of Massachusetts Lowell (2001)
  17. Gallant FM, Thesis PhD, University of Maryland, College Park (2003)
  18. Lee S, Hong IK, Lee JW, Jeong WB, Polymer(Korea), 38, in press (2014)
  19. Yoshimura A, Prud’homme RK, J. Rheol., 32, 53 (1988)
  20. Yilmazer U, Kalyon DM, J. Rheol., 33, 1197 (1989)
  21. Yaras P, Kalyon DM, Yilmazer U, Rheol. Acta, 33, 59 (1994)
  22. Maron SH, Pierce PE, J. Colloid Sci., 11, 80 (1956)