화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.26, No.5, 624-629, October, 2015
탄소반죽에 쑥 과산화효소를 고정한 과산화수소 감응 바이오센서
Hydrogen Peroxide Sensitive Biosensors Based on Mugwort-Peroxidase Entrapped in Carbon Pastes
E-mail:
초록
호모게나이저로 파쇄한 쑥 조직을 탄소반죽에 혼입시켜 과산화수소 감응 바이오센서를 제작하고 그것의 전기화학적 특성을 전압전류법으로 살펴보았다. Hanes-Woolf 도시의 좋은 직선성은 기질분해가 쑥 과산화효소에 의하여 촉매화되고 있음을 보여 주었으며, 작은 값의 대칭인자(α, 0.28)는 전극전위의 변화가 반응속도변화에 미치는 영향이 대단히 민감한 것을 말하여 주었다. 이런 실험적 사실들은 과산화수소의 분해가 쑥전극 표면에 있는 과산화효소의 촉매력에 의하여 정성적, 정량적으로 분해되고 있음을 보여 주는 것으로 서양 고추냉이로부터 추출된 고가의 시판 과산화효소를 쑥 조직으로 대치할 수 있음을 확신하게 하는 것이다.
A biosensor including the homogenized tissue of mugwort embedded in carbon paste, which senses hydrogen peroxide, was constructed and its electrochemical properties were validated using voltammetry. The good linearity of Hanes-Woolf plot implied that the reduction reaction of substrate was catalyzed by mugwort peroxidase at the electrode surface. Also the small value of symmetry factor, 0.28, indicated that electrochemical kinetics of the sensor is very sensitive to the change of electrode potential. Many experimental results collected above proved that the dissociation of hydrogen peroxide is dependent on the catalytic power of mugwort peroxidase qualitatively and quantitatively at the surface of the mugwort electrode. It is our firm belief that the marketed HRP can be replaced with mugwort tissue.
  1. Casero E, Darder M, Pariente F, Lorenzo E, Anal. Chim. Acta, 403, 1 (2000)
  2. Wang B, Zhang J, Dong S, Biosens. Bioelectron., 15, 397 (2000)
  3. Cosnier S, Szunerits S, Marks RS, Novoa A, Puech L, Perez E, Rico-Lattes I, Electrochem. Commun., 2, 851 (2000)
  4. Olschewski H, Erlenkotter A, Zaborosch C, Chemnitius GC, Enzyme Microb. Technol., 26(7), 537 (2000)
  5. Miao Y, Tan SN, Anal. Chim. Acta, 437, 87 (2001)
  6. Yang YH, Yang MH, Wang H, Tang L, Shen GL, Yu RQ, Anal. Chim. Acta, 509, 151 (2004)
  7. Kwon HS, Park IK, Yoon KJ, Seo ML, J. Kor. Chem. Soc., 44, 376 (2000)
  8. Lin MS, Tham SY, Rechnitz GA, Electroanalysis, 2, 511 (1990)
  9. Wang J, Zhang XJ, Prakash M, Anal. Chim. Acta, 395, 11 (1999)
  10. Dho HS, Yoon KJ, J. Ind. Eng. Chem., 17(2), 254 (2011)
  11. Yoon KJ, Kim KJ, Kwon HS, J. Kor. Chem. Soc., 43, 271 (1999)
  12. Lee BG, Rhyu KB, Yoon KJ, J. Ind. Eng. Chem., 16(3), 340 (2010)
  13. Tang B, Wang Y, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 59, 2867 (2003)
  14. Gaspar S, Popescu IC, Gazaryan IG, Bautista AG, Sakharov IY, Mattiasson B, Csoregi E, Electrochim. Acta, 46(2-3), 255 (2000)
  15. Yoon KJ, Elastomer, 42, 112 (2007)
  16. Yoon KJ, J. Kor. Chem. Soc., 48, 654 (2004)
  17. Kwon HS, Jin EH, Yoon KJ, Pak YN, J. Kor. Chem. Soc., 49, 224 (2005)
  18. Lee BG, Park SW, Yoon KJ, Anal. Sci. Technol., 19, 58 (2006)
  19. Kwon HS, Kim HJ, Yoon KJ, Pak YN, J. Kor. Chem. Soc., 51, 291 (2007)
  20. Rhyu KB, Yoon KJ, Appl. Chem. Eng., 21(6), 689 (2010)
  21. Yoon KJ, Pyun SY, Kwon HS, J. Kor. Chem. Soc., 41, 343 (1997)
  22. Yoon KJ, Bull. Korean Chem. Soc., 31, 2913 (2010)
  23. Rhyu KB, Yoon KJ, Anal. Sci. Technol., 24, 113 (2011)
  24. Brydson JA, Rubbery materials and their compounds, p. 291, Elsevier Applied Science, London and New York (1998).
  25. Mansouri A, Makris DP, Keflas P, J. Pham. Biomed. Anal, 39, 22 (2005)
  26. Lee BG, Rhyu KB, Yoon KJ, Anal. Sci. Technol., 22, 355 (2009)
  27. Rhyu KB, Yoon KJ, J. Kor. Chem. Soc., 55, 323 (2011)
  28. Gileadi E, Kirowa-Eisner E, Penciner J, Interfacial electrochemistry, pp. 3-13, Addison-Wesley Publishing company, Inc. U. S. A. (1975).
  29. Bard AJ, Faulkner LR, Electrochemical Methodes, pp. 176-182, John Wiley & Sons, Inc., Canada (1980).