화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.27, No.3, 285-290, June, 2016
불소화 일라이트 및 탄소나노튜브 강화 에폭시 복합재의 기계적 및 열적 특성
Mechanical and Thermal Properties of Epoxy Composites Reinforced Fluorinated Illite and Carbon Nanotube
E-mail:
초록
에폭시 복합재의 물성을 향상시키기 위하여, 일라이트 및 탄소나노튜브가 불소 가스로 표면처리 되었다. 불소화 처리된 일라이트 및 탄소나노튜브는 엑스선 광전자 분광기를 이용하여 분석하였고, 그 복합재의 기계적 및 열적 특성을 평가하였다. 이 에폭시 복합재는 미첨가 에폭시 복합재와 비교하여 인장강도는 약 59%, 충격강도는 18%, 열안정성은 124%로 크게 향상됨을 확인하였다. 에폭시 복합재의 기계적 및 열적 특성의 향상은 일라이트 및 탄소나노튜브의 불소화가 에폭시 내에서 분산성을 향상시키고 에폭시 수지와의 계면 결합력을 증가시켰기 때문이다.
To improve properties of epoxy composites, surfaces of the illite and carbon nanotube (CNT) were treated by fluorine gas. The fluorinated illite and CNT were then characterized by X-ray photoelectron microscopy (XPS) and the mechanical and thermal properties of their composites were evaluated. The tensile and impact strengths and thermal stability of the composites increased upto about 59%, 18% and 124%, respectively compared to those of the neat epoxy. Improvements of mechanical and thermal properties in the composites were attributed that the fluorination of illite and carbon nanotube helps to enhance the dispersion in epoxy resin and interfacial interaction between them.
  1. Das R, Banerjee SL, Kumar R, Kundu PP, J. Ind. Eng. Chem., 35, 388 (2016)
  2. Ansari MO, Ansari SP, Yadav SK, Anwer T, Cho MH, Mohammad F, J. Ind. Eng. Chem., 20(4), 2010 (2014)
  3. Gardea F, Lagoudas DC, Composites Part B, 56, 611 (2014)
  4. Giang T, Kim J, J. Ind. Eng. Chem., 30, 77 (2015)
  5. Son B, Hwang TS, Goo DC, Polym. Korea, 31(5), 404 (2007)
  6. Bujdak J, Hackett E, Giannelis EP, Chem. Mater., 12, 2168 (2000)
  7. Park SJ, Seo DI, Nah C, J. Colloid Interface Sci., 251(1), 225 (2002)
  8. Zhao XX, Li J, Zhang YQ, Dong HF, Qu JK, Qi T, Powder Technol., 271, 262 (2015)
  9. Jeong E, Lim JW, Seo K, Lee YS, J. Ind. Eng. Chem., 17(1), 77 (2011)
  10. Kim JH, Dao TD, Jeong HM, J. Ind. Eng. Chem., 33, 150 (2016)
  11. Koo MY, Shin HC, Kim WS, Lee GW, Carbon Lett., 15, 255 (2014)
  12. Tung WS, Bird V, Composto RJ, Clarke N, Winey KI, Macromolecules, 46(13), 5345 (2013)
  13. Mittal G, Dhand V, Rhee KY, Park SJ, Lee WR, J. Ind. Eng. Chem., 21, 11 (2015)
  14. Maka H, Spychaj T, Zenker M, J. Ind. Eng. Chem., 31, 192 (2015)
  15. Park SH, Bae J, J. Ind. Eng. Chem., 30, 1 (2015)
  16. Yang K, Huang X, Huang Y, Xie L, Jiang P, Chem. Mater., 25, 2327 (2013)
  17. Ganesan Y, Salahshoor H, Peng C, Khabashesku V, Zhang J, Care A, Rahbar N, Lou J, J. Appl. Phys., 115, 224 (2014)
  18. Jeong E, Lee YS, Appl. Chem. Eng., 22(5), 467 (2011)
  19. Jung MJ, Jeong E, Lee YS, Appl. Surf. Sci., 347, 250 (2015)
  20. Kim MJ, Jung MJ, Kim MI, Choi SS, Lee YS, Appl. Chem. Eng., 26(5), 587 (2015)
  21. Kim MJ, Jung MJ, Choi SS, Lee YS, Appl. Chem. Eng., 26(1), 92 (2015)
  22. Park OK, Jeevananda T, Kim NH, Kim SI, Lee JH, Scr. Mater., 60, 551 (2009)
  23. Hattori Y, Noguchi N, Okino F, Touhara H, Nakahigashi Y, Utsumi S, Tanaka H, Kanoh H, Kaneko K, Carbon, 45, 1391 (2007)
  24. Lee SG, Won JC, Lee JH, Choi KY, Polym. Korea, 29(3), 248 (2005)
  25. Yu HR, Jeong E, Kim J, Lee YS, Polym. Korea, 35(1), 47 (2011)
  26. Im JS, Lee SK, In SJ, Lee YS, J. Anal. Appl. Pyrolysis, 89, 225 (2010)
  27. Doyle CD, Anal. Chem., 33, 77 (1961)
  28. Park SH, Lee SG, Kim SH, J. Appl. Polym. Sci., 122(3), 2060 (2011)
  29. Lee SE, Cho S, Lee YS, Carbon Lett., 15, 32 (2014)
  30. Mittal G, Dhand V, Rhee KY, Kim HJ, Jung DH, Carbon Lett., 16, 1 (2015)
  31. Kim JY, Kim SH, J. Polym. Sci. B: Polym. Phys., 44(7), 1062 (2006)
  32. Ma PC, Kim JK, Tang BZ, Compos. Sci. Technol., 67, 2965 (2007)